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Abstract. In part-1 of this paper an adaptive filtering based on a reference recursive recipe (RRR) was

developed and tested on a simulated dynamics of a spring, mass and damper with a weak nonlinear spring. In

this paper the above recipe is applied to a more involved case of three sets of airplane data that have a larger

number of state, measurements and unknown parameters. The flight tests cannot always be conducted in an ideal

situation of the process noise and the measurement noises being white Gaussian as is generally assumed in the

Kalman filter. The measurements may not be available with respect to the center of gravity and possess scale and

bias factors, which will have to be modelled and estimated as well. The coupling between the longitudinal and

lateral motion brings in added difficulty but makes the problem more interesting. It turns out that even a

parameter that strongly affects the airplane dynamics is estimated which vary widely among the approaches. The

RRR has been shown to be better than the earlier approaches in estimating the unknowns. The generalized cost

functions that are introduced in the present work help identify definitive results from deceptive results.

Keywords. Adaptive EKF; longitudinal and lateral flight dynamics; recursive parameter estimation; Cramer

Rao bound.

1. Introduction

In part-1 of this paper an extensive study was carried out

using an adaptive extended Kalman filter (EKF) tuning

procedure called reference recursive recipe (RRR) applied

to the simulated data of a simple spring, mass and damper

system with a weak nonlinear spring. Here we demonstrate

the effectiveness of the RRR in handling more involved

flight test data of airplane longitudinal and lateral motion.

They have many states and measurements and a large

number of aerodynamic parameters to be estimated. Further

the flight tests cannot always be conducted in an ideal sit-

uation of the process noise and the measurement noises

being white Gaussian as assumed in the EKF. The mea-

surements are not available with respect to the center of

gravity and possess scale and bias factors, which will have

to be modeled and estimated as well. The coupling between

the longitudinal and lateral motion makes the problem

difficult and thus more interesting. At times the noisy

measurements from the longitudinal and lateral motion are

input into the longitudinal states. This is another example of

subjectivity in estimation theory. However the final results

should be meaningful and acceptable no matter whatever

subjective inputs are introduced into the problem formu-

lation and solution.

For airplane flight test data analysis many approaches

have been suggested to handle unknown parameters and the

noise covariances. These are the natural formulation of

Schultz [1], the innovation formulation of Stepner and

Mehra [2], a combined formulation called MMLE3 of

Maine and Iliff [3, 4], the noise accounting approach of

Jategaonkar and Plaetschke [5] and the combined formu-

lation of Ishimoto [6] to solve the practical problems in

natural and innovation formulations. A more detailed dis-

cussion on aircraft flight test data analysis can be found in

Gemson [7], Klein and Morelli [8], Klein [9] and Jate-

gaonkar [10]. There are many formulations for solving an

optimization or estimation problem since the unknowns do

not occur in a simple way in the cost function, and there are

many transformed variables with which one tries to solve

for the basic unknowns [11, 12]. Further the size and the

required compatibility conditions among the transformed

variables lead to the many difficulties not found in the

classical optimization problems.*For correspondence
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1.1 General observations from all the real flight

test data results

The report by Shyam et al [13] contains more examples of

simulated and real flight test data analysis with down

loadable computer programs and data for the benefit of the

readers. Presently only three real flight data analysis is

presented in this Part-2 of the paper.

All the real data studies were run for 100 iterations using

the RRR with Q[0 since the off-diagonal elements of the

correlation coefficient matrix C reduced substantially than

for Q = 0 and hence all the former estimates are more reli-

able. The convergence of the parameter estimates, the noise

covariances and the cost functions were analysed in terms of

the quantities listed in section 6 of part-1 of the paper.

Tables 1, 3 and 5 provide a comparison of the parameter

estimates along with their CRBs for all the real data studied

by different approaches. The cost functions and the Q and

R estimates from RRR and other approaches are shown in

tables 2, 4 and 6 for the three cases, respectively. Generally

(but not always) the individual R and Q values are the least

and the highest in RRR than from other approaches.

However in all the cases firstly for the RRR approach the

values of (i) J1–J3 are closer to the number of measure-

ments and the product of the estimated R is the smallest,

indicating that the measurement equations are better bal-

anced. Secondly the J6–J8 are closer to the number of

states and the product of the estimated Q is the largest

among all, thus assisting the state equations evolving with

state noise to track the measurements better. Such a nega-

tively correlated behaviour of R and Q is mentioned by

Bohlin [14]. They show that the choice of the filter statistics

for estimating Q and R in the proposed RRR approach is

better than in other approaches.

Unlike in the simulated studies, in all cases it was noticed

that the estimated R and Q noise did not have constant

statistical characteristics across time. Another experiment

was carried out by generating a typical data set by using the

estimated parameter and injecting the estimated Q and R as

additive white Gaussian noise. This is to determine the

effect of non-white and non-Gaussian noise distribution in

the real data on the CRBs. After each iteration in the RRR

the H, Q and R were reset as from the real data. A similar

experiment was also conducted by updating H as well. It

turned out that there is not much of a difference in the final

estimates and the CRBs.

In the subsequent real data studies we use the notations

and equations as in Gemson [7] and Gemson and Anan-

thasayanam [15].

Table 1. Real flight test data case-1 results (H; rH).

H RRR NASA Gemson MT MS

CNa 4.6469 (0.0179) 4.9584 (0.1168) 4.7073 (0.039) 4.6978 (0.0229) 4.9141 (0.0422)

CNde
0.0555 (0.0277) 0.3023 (0.1550) 0.1292 (0.0523) 0.1225 (0.0357) 0.4691 (0.0517)

CL0 0.0162 (0.0032) 0.2189 (0.009344) �0.0064 (0.0048) 0.0160 (0.0018) 0.0184 (0.0021)

Cma �0.5468 (0.0093) �0.6125 (0.00953) �0.63 (0.0188) �0.5560 (0.0098) �0.5885 (0.0036)

Cmq
�19.8027 (0.6692) �22.27 (0.7713) �20.8623 (1.1908) �19.7062 (0.7286) �20.2395 (0.2937)

Cmde
�1.1229 (0.0218) �1.2193 (0.02881) �1.2763 (0.0442) �1.1396 (0.0236) �1.1503 (0.0111)

Cm0
�0.0495 (0.0012) �0.0532 (0.00165) �0.0561 (0.0023) �0.0502 (0.0013) �0.0497 (0.0006)

h0 0.0007 (0.0021) 0.0273 (0.04518) 0.0007 (0.0135) 0.0008 (0.0011) 0.0003 (0.0012)

CN0
0.2195 (0.0014) 0.2254 (0.008725) 0.2225 (0.0029) 0.2218 (0.0018) 0.2358 (0.0028)

CAa �0.1398 (0.0153) �0.3639 (0.05328) �0.1023 (0.0214) �0.1401 (0.0185) 0.1265 (0.0197)

CAa2
�3.2088 (0.1702) – (–) �3.2397 (0.2430) �3.2088 (0.2070) �3.8625 (0.2376)

CAde
�0.0651 (0.0134) �0.07 (0.08084) �0.0267 (0.0191) �0.0633 (0.0160) �0.1178 (0.0167)

CA0
�0.0155 (0.0007) �0.0131 (0.004088) �0.0144 (0.0010) �0.0154 (0.0008) �0.0182 (0.0008)

Table 2. Real flight test data case-1 resultsa (R,Q,J).

R (Ref)

�10�6

Q (Ref)

�10�6

J1–J8
(Ref)

R (MT)

�10�6

Q (MT)

�10�6

J1–J8
(MT)

R (MS)

�10�6

Q(MS)

�10�6

J1–J8
(MS)

4.4752 4.0090 3.3893

0.49 5.1532 0.4107 3.9630 3.2046 3.3866

0.04 0.134 4.6432 0.0312 0.0393 2.9764 37.6770 0.0001 3.2057

0.40 2.287 0.0004 3.9381 2.6418 0.0004 7.5509 0.0015 0.0002

15.98 1.204 �56.2206 94.5086 0.3231 �54.7596 198.2716 0.3456 �49.6223

17.70 2.9551 26.3511 6.6681 28.9841 3.8921

2.9303 6.4985 4.7110

2.5161 2.4562 2.6369

aCost functions are not close to their expected values in MT and MS methods.
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2. Analysis of real flight test case-1

The salient features of this aircraft are available in NASA

TM-X 56036 [16] and in NASA TP 1690 [3]. The param-

eters are estimated in dimensionless form. The data set

obtained is for a short period motion excited by the up and

down elevator control input (de in degrees or ‘deg’) as

shown in figure 1. In general the flight test data are such

that the longitudinal and lateral motions are decoupled.

Some of the available measurements have been used as

inputs in the state equations, which include roll angle (/m),

sideslip (bm), roll rate (pm), yaw rate (rm) and the angle of

attack (am) and are shown in figures 2, 3, 4, 5 and 9,

respectively. The state equations (n ¼ 3) for the angle of

attack (a), pitch rate (q) and the pitch angle (h) are

_a ¼ � �qS

mV
CL þ qþ g

V
ðcosð/mÞcosðamÞcosðhÞ þ sinðamÞsinðhÞÞ

� bmðpmcosðamÞ þ rmsinðamÞÞ

_q ¼ �qS�c

Iyy
Cmaaþ Cmq

�c

2V
qþ Cmde

de þ Cm0

� �
þ Izz� Ixx

Iyy
rmpm

_h ¼ qcosð/mÞ � rmsinð/mÞ þ h0:

The measurement equations (m = 5) are

am ¼ a� Kaxa
q

V
; qm ¼ q; hm ¼ h;

anm ¼ �qS

mg
CN þ xan

g
_q; axm ¼ � �qS

mg
CA þ zax

g
_q

where

Table 4. Real flight test data case-2 resultsa (R,Q,J).

R (Ref)

�10�6

Q (Ref)

�10�6

J1–J8
(Ref)

R (MT)

�10�6

Q (MT)

�10�6

J1–J8
(MT)

R (MS)

�10�6

Q(MS)

�10�6

J1–J8
(MS)

3.9336 3.7662 3.1621

4.2225 4.5191 3.1507

1.241 0.180 3.6162 1.6135 0.2025 3.8384 3.1599 0.00005 2.5900

0.051 2.954 0.0008 0.2395 3.1532 0.0008 37.2424 0.0003 0.0007

0.460 2.646 �44.1347 2.3155 0.6666 �43.7340 9.3413 0.2386 �38.0517

5.668 2.9752 2.9290 4.2266 841.5496 8.4768

2.9760 4.2284 8.4655

2.9070 2.9489 3.0215

aCost functions are not close to their expected values in MT and MS methods.

Table 3. Real flight test data case-2 results (H; rH).

H RRR NASA Gemson MT MS

CLa 4.9235 5.1068 4.9028 4.9260 5.0620

(0.0164) (0.1322) (0.0168) (0.0184) (0.0323)

CLde
0.1554 0.1909 0.0879 0.1587 0.3594

(0.0271) (0.1602) (0.0267) (0.0302) (0.0508)

CL0 0.2409 0.2448 0.2529 0.2408 0.2517

(0.0021) (0.009215) (0.0018) (0.0023) (0.0027)

Cma -0.5293 -0.6474 -0.6174 -0.5285 -0.5590

(0.0079) (0.02339) (0.0211) (0.0082) (0.0055)

Cmq
-11.8596 -14.26 -18.8339 -11.8255 -12.5965

(0.2402) (0.6528) (0.8379) (0.2483) (0.1400)

Cm _a -6.8959 -8.27 -7.1290 -6.8798 -6.6713

(0.4891) (1.296) (1.544) (0.5062) (0.3021)

Cmde
-0.9731 -1.1614 -1.1841 -0.9711 -1.0247

(0.0177) (0.05371) (0.471) (0.0184) (0.0129)

Cm0
-0.0425 -0.0505 -0.0507 -0.0424 -0.0447

(0.0009) (0.002655) (0.0024) (0.0009) (0.0006)

h0 0.0003 -0.01177 -0.0037 0.0002 -0.0006

(0.0021) (0.02528) (0.001) (0.0011) (0.0007)

CN0
0.2538 0.2541 0.2503 0.2540 0.2635

(0.0014) (0.008935) (0.0014) (0.0016) (0.0026)
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CL ¼ CNcosðaÞ � CAsinðaÞ þ CL0

CN ¼ CNaaþ CNde
de þ CN0

CA ¼ CAaaþ CAa2
a2 þ CAde

de þ CA0
:

The unknown parameter set (p ¼ 13) isH ¼ ðCNa ;CNde
;CL0 ;

Cma ;Cmq
;Cmde

;Cm0
; h0;CN0

;CAa ;CAa2
;CAde

;CA0
ÞT. The ones

with suffix ‘de’ are the control derivatives, the ones with suffix
zero are the biases and all others are aerodynamic derivatives.

The initial states are taken as initialmeasurement and the initial

parameter values are taken as ð4; 0:24; 0:17;�0:48;�17;

�0:9;�0:05;�0:02; 0:175;�0:3; 0:03;�0:083;�0:015ÞT.

2.1 Remarks on the real data case-1 results

Figures 1–5 show the inputs used in the state equations. The

variations of the absolute value of the estimated initial

parameters and their P0 with iterations are shown in fig-

ure 6 and similarly in figure 7 for Q and R and in figure 8

for the cost functions J1–J8. Figures 9 and 10 compare the

measurements with (i) the state dynamics based on the

estimated parameters, (ii) the state after measurement

update and (iii) the smoothed state.

Another feature of recursive parameter estimation is that

it can vary through time instants and point to two distinct

values as reflected in the estimation of CNa in figure 11.

This feature of tracking time-varying parameters by the

EKF brings in clearly another advantage of sequential

processing instead of batch processing of the data by a least

squares (LS) procedure. If LS had been used then for the

parameter (CNa ) only an average value would have been

obtained.

Table 6. Real flight test data case-3 resultsa (R,Q,J).

R �10�6

(Ref) Q �10�6(Ref)

J1–J8
(Ref)

R (MT)

�10�6

Q (MT)

�10�6

J1–J8
(MT)

R (MS)

�10�6

Q (MS)

�10�6

J1–J8
(MS)

4.7650 4.3450 4.8127

0.0871 4.8321 4.3888 4.8200

0.0623 4.2163 3.5272 2.83 3.1039 13.03 0.0005 4.5173

0.2255 5.1340 0.0004 18.86 2.0481 0.0003 88.07 0.0007 0.0003

0.0200 4.9426 �55.0111 3.88 3.7876 �51.3490 4.5 1.0975 �47.2441

43.8064 1.4324 3.9673 4.09 1.0057 9.3006 36.36 0.0016 7.5931

3.9669 73.6 0.5502 9.3005 60.13 7.5896

3.8171 3.5105 3.9681

aCost functions are not close to their expected values in MT and MS methods

Other constant values used for case-1 are as follows:

�c =
5.58

S =
184

m =
172.667

Ixx =
4142.9

Iyy =
3922.4

Izz =
7642.5

g =
32.2

V =
403.1

�q ¼
83:08

Kaxa ¼
�0:0279

xan ¼
0:101

zax ¼
�1:17

Table 5. Real flight test data case-3 results (H; rH).

H RRR NASA Gemson MT MS

CYb �0.4579 �0.4792 �0.4761 �0.4541 �0.4642

(0.0043) (0.01711) (0.0043) (0.0053) (0.0049)

CYdr
0.1040 0.0887 0.0981 0.0741 0.0797

(0.0067) (0.01955) (0.0065) (0.0065) (0.0057)

b0 �0.0143 �0.10116 �0.0124 �0.0107 �0.0109

(0.0048) (0.00294) (0.0021) (0.0034) (0.0009)

CLb �0.0168 �0.0205 �0.0182 �0.0170 �0.0177

(0.0005) (0.00107) (0.0011) (0.0004) (0.0003)

CLp �0.3100 �0.36 �0.3585 �0.3112 �0.3080

(0.0028) (0.00713) (0.0048) (0.0027) (0.0022)

CLr 0.0740 0.0697 0.0731 0.0733 0.0757

(0.0030) (0.005884) (0.0066) (0.0028) (0.0022)

CLda
0.0557 0.0612 0.0622 0.0557 0.0546

(0.0004) (0.001050) (0.0007) (0.0004) (0.0003)

CLdr
0.0072 0.006 0.0089 0.0073 0.0082

(0.0007) (0.001252) (0.0031) (0.0007) (0.0005)

CL0 �0.0020 �0.002 �0.0023 �0.0020 �0.0021

(0.0001) (0.0001467) (0.0003) (0.0001) (0.0001)

/0 0.0018 0.1506 0.0023 0.0019 0.0019

(0.0027) (0.07034) (0.0011) (0.0012) (0.0013)

CNb 0.0656 0.0705 0.0703 0.0657 0.0662

(0.0005) (0.000478) (0.0009) (0.0004) (0.0004)

CNp
�0.0429 �0.046 �0.0557 �0.0473 �0.0596

(0.0031) (0.004006) (0.0039) (0.0023) (0.0021)

CNr
�0.0880 �0.1062 �0.0576 �0.0854 �0.1021

(0.0033) (0.003562) (0.0045) (0.0023) (0.0010)

CNda
0.0004 0.0006 0.0033 0.0010 0.0030

(0.0005) (0.0005924) (0.0006) (0.0003) (0.0003)

CNdr
�0.0478 �0.0513 �0.048 �0.0476 �0.0502

(0.0008) (0.0009139) (0.0013) (0.0006) (0.0003)

CN0
0.0067 0.0072 0.0068 0.0067 0.0069

(0.0001) (0.0001181) (0.0002) (0.0001) (0.00003)

CY0 �0.0259 �0.0242 �0.0251 �0.0221 �0.0228

(0.0008) (0.002307) (0.0007) (0.0008) (0.0007)

CYp �0.2828 0.0821 0.5223

(0.0327) (0.2941) (0.0710)

CYr 0.2224 �1.2336 �0.8452

(0.0281) (0.4470) (0.1355)

CYda
0.0384 0.0011 �0.0017

(0.0047) (0.0026) (0.0024)
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Figure 1. Control input (de in deg) versus time (s).

–

–

–

–

–

–

Figure 2. Input roll angle(/m in deg) versus time (s).

–

–

–

–

–

–

–

–

–

Figure 3. Input sideslip (bm in deg) versus time (s).

–

–

–

–

Figure 4. Input roll rate (pm in deg/s) versus time (s).
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–

–

–

–

Figure 5. Input yaw rate (rm in deg/s) versus time (s).

Figure 6. Variation of initial parameters H0 (continuous) and their P0 (dashed) with iterations.

Figure 7. Variation of Q (dashed) and R (continuous) with iterations.
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Figure 8. Variation of different costs (J1–J8) with iterations.

(a)

(b)

(c)

–

–

Figure 9. Comparison of the predicted dynamics, posterior, smoothed and measurement ((a) angle of attack (deg), (b) pitch rate (deg/s)
and (c) pitch angle (deg)) versus time.

(a)

(b)

Figure 10. Comparison of the predicted dynamics, posterior, smoothed and measurement in g, (a) normal acceleration and (b) axial
acceleration versus time.
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Table 1 provides a comparison of the parameter esti-

mates along with their CRBs (in parenthesis) for all the real

data studied by different approaches such as MT and MS

with scaled up P0. Since the NASA results are obtained

with Q = 0 only a comparison with other approaches is

valid. Generally the CRBs from the RRR is lower than from

other approaches and at times their lower CRBs is only

fortuitous. The rounded 100C matrix of the parameter

estimates is

Based on the correlation coefficient matrix from RRR for

this case with 13 unknown parameters the weakest can be

inferred as h0 and CL0 , which are almost uncorrelated with all

other parameters. Hence their estimates and uncertainty can

vary widely among the approaches. Next it is possible to group

the parameters as ðCA0
;CAde

Þ; ðCAa ;CAa2
Þ; ðCM0

;CMde
Þ;

ðCMa ;CMq
Þ; ðCN0

;CNde
Þ and ðCNa ;CNde

Þ. The estimation of the

aerodynamic parameters depends on two factors, namely their

representation and the excitation. The first group is highly

correlated since over a range of excitation by the elevator

represented by de it could have been difficult to discriminate

between the two as seen by the high correlation between them.

A similar behaviour is seen in the second, third, fifth and sixth

groups, the last being not that highly correlated. Though the

fourth group represents the pitchingmoment the excitation bya
and q helps discriminate them as indicated by the low corre-

lation between them. It is this feature that should be kept in

mind by a designer using the above estimates for further use.

3. Analysis of real flight test case-2

The data set is obtained from NASA TP 1690 [3] by

employing a peculiar manoeuvre where elevator control

input (de in deg) shown in figure 12 is imparted when

the aircraft (T 37 B) is rolling through a full rotation

about its x-axis during aileron roll. Similar to the earlier

case, the coupling between the longitudinal and lateral

motion is replaced by their measured values, which

includes roll angle (/m), sideslip (bm), velocity (Vm),

roll rate (pm), yaw rate (rm) and the angle of attack (am)
as shown in figures 13, 14, 15, 16, 17 and 21, respec-

tively. The state equations (n ¼ 3) for the angle of

attack (a), pitch rate (q) and the pitch angle (h),
respectively, are

_a ¼ � �qS

mVmcosðbmÞ
ðCLaaþ CLde

de þ CL0Þ þ q

þ g

VmcosðbmÞ
ðcosð/mÞcosðamÞcosðhÞ

þ sinðamÞsinðhÞÞ � tanðbmÞðpmcosðamÞ þ rmsinðamÞÞ

_q ¼ �qS�c

Iyy
Cmaaþ Cmq

�c

2V
qþ Cm _a

�c

2V
_aþ Cmde

de þ Cm0

� �

þ Izz� Ixx

Iyy
rmpm

_h ¼ qcosð/mÞ � rmsinð/mÞ þ h0:

Figure 11. Variation of the parameter estimate (CNa ) through time instants.

H CNa CNde
CL0 Cma Cmq

Cmde
Cm0

h0 CN0
CAa CAa2

CAde
CA0

CNa 100 62 0 �18 0 �7 �3 0 32 �1 �10 �10 �8

CNde
62 100 0 �10 1 �11 �10 0 93 �4 �2 �16 �15

CL0 0 0 100 0 0 0 0 0 0 0 0 0 0

Cma �18 �10 0 100 18 51 31 0 �5 �15 1 �15 �7

Cmq
0 1 0 18 100 76 79 0 1 6 �3 5 2

Cmde
�7 �11 0 51 76 100 97 0 �10 �1 �2 �14 �14

Cm0
�3 �10 0 31 79 97 100 0 �11 2 �3 �11 �15

h0 0 0 0 0 0 0 0 100 0 0 0 0 0

CN0
32 93 0 �5 1 �10 �11 0 100 �5 2 �15 �15

CAa �1 �4 0 �15 6 �1 2 0 �5 100 �83 42 6

CAa2
�10 �2 0 1 �3 �2 �3 0 2 �83 100 �7 16

CAde
�10 �16 0 �15 5 �14 �11 0 �15 42 �7 100 91

CA0
�8 �15 0 �7 2 �14 �15 0 �15 6 16 91 100
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The measurement equations (m = 4) are given by

am ¼ Kaa� Kaxa
q

V
; qm ¼ q; hm ¼ h;

anm ¼ �qS

mg
ðCNaaþ CNde

de þ CN0
Þ þ xan

g
_q:

The unknown parameters (p ¼ 10) are ðCLa ;CLde
;CL0 ;

Cma ;Cmq
;Cm _a ;Cmde

;Cm0
; h0;CN0

ÞT with an approximation

CNa ¼ CLa and CNde
¼ CLde

. The ones with suffix ‘de’ are
the control derivatives, the ones with suffix zero are the

biases and all others are aerodynamic derivatives. The

initial states are taken as initial measurement and the initial

parameter values are taken as ð4; 0:15; 0:2;�0:5;�11:5;

�5;�1:38;�0:06;�0:01; 0:2ÞT.

–

–

–

–

–

–

–

–

Figure 12. Control input (de in deg) versus time (s).

–

–

–

–

Figure 13. Input roll angle (/m in deg) versus time (s).

–

Figure 14. Input sideslip angle (bm in deg) versus time (s).

Other constant values used for case-2 are as follows:

S = 184 m = 196 Ixx =

6892.7

Iyy = 3953.2 Izz =

10416.4

g = 32.2 �c ¼ 5:58 Kaxa ¼
�0:0279

xan ¼ 0:101 Ka ¼ 1
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3.1 Remarks on the real data case-2 results

Figures 12–17 show the inputs used in the state equations.

The variations of the absolute value of the estimated initial

parameters and their P0 with iterations are shown in fig-

ure 18 and similarly in figure 19 for Q and R and in fig-

ure 20 for the cost functions J1–J8. Figures 21 and 22

compare the measurements with the (i) the state dynamics

based on the estimated parameters, (ii) the state after

measurement update and (iii) the smoothed state.

Table 3 provides a comparison of the parameter esti-

mates along with their CRBs (in parenthesis) for all the real

data studied by different approaches. Since the NASA

results are obtained with Q = 0 only a comparison with

other approaches is valid. Generally the CRBs from the

RRR is lower than from other approaches and at times their

lower CRBs is only fortuitous. The rounded 100C matrix of

the parameter estimates is

Figure 15. Input velocity (Vm in ft/s) versus time (s).

–

Figure 16. Input roll rate (pm in deg/s) versus time (s).

–

–

–

–

Figure 17. Input yaw rate (rm in deg/s) versus time (s).
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Figure 18. Variation of initial parameters H0 (continuous) and their P0 (dashed) with iterations.

Figure 19. Variation of Q (dashed) and R (continuous) with iterations.

Figure 20. Variation of different costs (J1–J8) with iterations.
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Based on the correlation coefficient matrix from RRR for

this case with 10 unknown parameters the weakest can be

inferred as h0, which is almost uncorrelated with all other

parameters. Hence its estimates and uncertainty can vary

widely among the approaches. Next it is possible to group

the parameters as (CN0
;CLa ;CLde

;CL0 ) and (CM0
;CMde

;CM _a ;

CMq
;CMa). As mentioned earlier the estimation of the

aerodynamic parameters depends on two factors, namely

their representation and the excitation. Among the above

group 4 and 5 parameters this feature should be kept in mind

by a designer using the above estimates for further use.

Figure 21. Comparison of the predicted dynamics, posterior, smoothed and the measurement, (a) angle of attack (deg), (b) pitch rate

(deg/s) and (c) pitch angle (deg)) versus time.

Figure 22. Comparison of the predicted dynamics, posterior, smoothed and the normal acceleration measurement in g versus time.

H CLa CLde
CL0 Cma Cmq

Cm _a Cmde
Cm0

h0 CN0

CLa 100 67 41 �19 1 1 �8 �8 0 62
CLde

67 100 64 �11 2 1 �12 �13 0 98

CL0 41 64 100 �4 �2 5 �5 �7 0 65
Cma �19 �11 �4 100 25 70 91 88 0 �10
Cmq

1 2 �2 25 100 �27 21 9 1 1

Cm _a 1 1 5 70 �27 100 80 84 �1 2
Cmde

�8 �12 �5 91 21 80 100 99 0 �12

Cm0
�8 �13 �7 88 9 84 99 100 0 �13

h0 0 0 0 0 1 �1 0 0 100 0
CN0

62 98 65 �10 1 2 �12 �13 0 100
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4. Analysis of real flight test case-3

The data set is obtained from NASA TP 1690, which

describes the lateral motion of an oblique wing aircraft with

zero wing skew excited by the control input (da and dr in
deg) as shown in figure 23. Similar to the earlier case, the

coupling between the longitudinal and lateral motion is

replaced by their measured values, which includes pitch

angle (hm in rad), pitch rate (qm in rad/s) and the angle of

attack (am in rad) as shown in figures 24, 25 and 26,

respectively. The state equations (n = 4) for the angle of

sideslip (b), roll rate (p), roll angle (/) and yaw rate (r) are

_b ¼ �qS

mV
CYbbþ CYp

b

2V
pþ CYr

b

2V
r þ CYda

da þ CYdr
dr þ b0

� �

þ g

V
sinð/ÞcosðhmÞ þ psinðamÞ � rcosðamÞ

_p� _r
Izx

Ixx
¼ �qSb

Ixx
CLbbþ CLp

�c

2V
pþ CLr

�c

2V
r þ CLda

da þ CLdr
dr þ CL0

� �

þ Iyy� Izz

Ixx
rqm þ Izx

Ixx
pqm

_/ ¼ pþ qtanðhmÞsinð/Þ þ rtanðhmÞcosð/Þ þ /0

_r � _p
Izx

Izz
¼ �qSb

Izz
CNbbþ CNp

b

2V
pþ CNr

b

2V
r þ CNda

da þ CNdr
dr þ CN0

� �

þ Ixx� Iyy

Izz
pqm � Izx

Izz
rqm:

Figure 23. Control input (da; dr in deg) versus time (s).

Figure 24. Input pitch angle (hm in deg) versus time (s).

Figure 25. Input pitch rate (qm in deg/s) versus time (s).
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The measurement equations (m = 5) are given by

bm ¼ b� Kbzb
p

V
þ Kbxb

r

V
; pm ¼ p; /m ¼ /; rm ¼ r;

aym ¼ �qS

mg
CYbbþ CYp

b

2V
pþ CYr

b

2V
r þ CYda

da þ CYdr
dr þ CY0

� �

� zay

g
_pþ xay

g
_r:

The unknown parameter set (p ¼ 20) is H ¼ ðCYb ;CYdr
;

b0;CLb ;CLp ;CLr ;CLda
;CLdr

;CL0 ;/0;CNb ; CNp
; CNr

;CNda
;

CNdr
;CN0

;CY0 ;CYp ;CYr ;CYda
ÞT. The ones with suffix ‘da’

and ‘dr’ are the control derivatives, the ones with suffix

zero are the biases and all others are aerodynamic deriva-

tives. The initial states are taken as initial measurement and

the initial parameter values are taken as ð�0:5; 0:1;�0:01;
0:01;�0:35; 0:01; 0:06; 0:01;�0:002; 0:002; 0:07; �0:055;

�0:05; 0:003;�0:04; 0:0068;�0:025; 0:5;�1; 0:005ÞT .

4.1 Remarks on the real data case-3 results

Figures 23–26 show the inputs used in the state equations.

The variations of the absolute value of the estimated initial

parameters and their P0 with iterations are shown in fig-

ure 27 and similarly in figure 28 for Q and R and in fig-

ure 29 for the cost functions J1–J8. Figures 30–32 compare

the measurements with the (i) the state dynamics based on

the estimated parameters, (ii) the state after measurement

update and (iii) the smoothed state.

Table 5 provides a comparison of the parameter esti-

mates along with their CRBs (in parenthesis) for all the real

data studied by different approaches. Since the NASA and

Figure 26. Input angle of attack (am in deg) versus time (s).

Figure 27. Variation of initial parameters H0 (continuous) and their P0 (dashed) with iterations.

Other constant values used for case-3 are as follows:

�q ¼
865:3

S =

9.3

m =

387.7

Ixx =

314

Iyy =

488

Izz =

698

Izx =

69

V =

39.41

g =

9.81

b =

6.81

Kbzb ¼
0:305

Kbxb ¼
2:73

zay ¼
�0:098

xay ¼
0:651

1504 M Shyam Mohan et al



Gemson’s results are obtained with Q = 0 and with fewer

(17) parameters only a comparison with other approaches is

valid. Generally the CRBs from the RRR is lower than from

other approaches and at times their lower CRBs is only

fortuitous. The rounded 100C matrix of the parameter

estimates is

Figure 28. Variation of Q (dashed) and R (continuous) with iterations.

Figure 29. Variation of different costs (J1–J8) with iterations.

(a)

(b)

Figure 30. Comparison of the predicted dynamics, posterior, smoothed and the measurement in deg, (a) sideslip and (b) roll angle,

versus time.
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Based on the correlation coefficient matrix from RRR for

this case with 20 unknown parameters the weakest can be

inferred as b0 and /0, which are almost uncorrelated with

all other parameters. Hence their estimates and uncertainty

can vary widely among the approaches. Next it is possible

to group the parameters into three sets as the parameters in

the three sets ðCLb ;CLp ;CLr ;CLda
;CLdr

;CL0Þ; ðCNb ;CNp
;CNr

;

CNda
;CNdr

;CN0
Þ and ðCYb ;CYp ;CYr ;CYda

;CYdr
;CY0Þ, All have

very similar correlations among themselves as seen in the

thick blocks of matrices and the reason is as follows. There

is coupling of the dynamical motion due to the states and

the controls. If a certain state or control is excited relatively

higher than others then the estimated parameter that mul-

tiplies it will have lower correlation with other estimates in

the set and vice versa. Since the parameter sets are similarly

excited all of them have similar correlation coefficient

matrices. As mentioned earlier the estimation of the

(a)

(b)

Figure 31. Comparison of the predicted dynamics, posterior, smoothed and the measurement in deg/s, (a) roll rate and (b) Yaw rate,

versus time.

Figure 32. Comparison of the predicted dynamics, posterior, smoothed and the measurement in g (lateral acceleration) versus time.

Θ β0 φ0 CLβ
CLp

CLr
CLδa

CLδr
CL0 CNβ

CNp
CNr

CNδa
CNδr

CN0 CYβ
CYp

CYr
CYδa

CYδr
CY0

β0 100 –1 0 0 0 0 1 0 0 0 2 0 4 –8 3 0 –9 –1 –15 16
φ0 –1 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CLβ
0 0 100 17 12 –11 3 12 –28 –5 –3 3 –1 –3 –6 –1 –1 1 0 –1

CLp
0 0 17 100 3 –84 8 1 –5 –29 –1 24 –2 0 –1 –5 0 4 0 0

CLr
0 0 12 3 100 –2 62 –57 –3 –1 –28 0 –17 16 –1 0 –6 0 –4 3

CLδa
0 0 –11 –84 –2 100 –3 –6 3 24 0 –29 1 2 1 4 0 –5 0 0

CLδr
1 0 3 8 62 –3 100 –96 –1 –2 –17 1 –29 27 0 0 –4 0 –6 6

CL0 0 0 12 1 –57 –6 –96 100 –3 0 16 2 27 –29 –1 0 3 0 6 –6
CNβ

0 0 –28 –5 –3 3 –1 –3 100 17 12 –11 3 12 –27 –4 –3 3 –1 –3
CNp

0 0 –5 –29 –1 24 –2 0 17 100 3 –84 8 1 –5 –22 –1 19 –2 0
CNr

2 0 –3 –1 –28 0 –17 16 12 3 100 –2 62 –57 –3 –1 –27 0 –16 15
CNδa

0 0 3 24 0 –29 1 2 –11 –84 –2 100 –3 –6 3 19 0 –22 1 2
CNδr

4 0 –1 –2 –17 1 –29 27 3 8 62 –3 100 –96 –1 –2 –17 1 –26 25
CN0 –8 0 –3 0 16 2 27 –29 12 1 –57 –6 –96 100 –3 0 15 1 25 –26
CYβ

3 0 –6 –1 –1 1 0 –1 –27 –5 –3 3 –1 –3 100 21 7 –16 –3 18
CYp 0 0 –1 –5 0 4 0 0 –4 –22 –1 19 –2 0 21 100 3 –90 9 3
CYr

–9 0 –1 0 –6 0 –4 3 –3 –1 –27 0 –17 15 7 3 100 –2 64 –60
CYδa

–1 0 1 4 0 –5 0 0 3 19 0 –22 1 1 –16 –90 –2 100 –5 –7
CYδr

–15 0 0 0 –4 0 –6 6 –1 –2 –16 1 –26 25 –3 9 64 –5 100 –96
CY0 16 0 –1 0 3 0 6 –6 –3 0 15 2 25 –26 18 3 –60 –7 –96 100
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aerodynamic parameters depends on two factors, namely

their representation and the excitation. Among the above

group of six parameters this feature should be kept in mind

by a designer using the above estimates for further use.

5. Conclusions

The reference recursive recipe (RRR) is applied to the more

involved cases of three sets of real airplane flight test data,

which have a larger number of unknowns. A closer look at

the correlation coefficients in such studies of estimating the

unknown parameters indicates the necessity of processing

the data by including the process noise Q in addition to the

measurement noise R. Generally the parameter estimates

across the various approaches are close but their CRB can

vary much more among them. In particular the generalized

cost functions based on balancing the state and measure-

ment equations using the many filter outputs introduced in

the present work help show the RRR to be more reliable

than the earlier approaches.
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