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Abstract. In part-1 of this paper an adaptive filtering based on a reference recursive recipe (RRR) was
developed and tested on a simulated dynamics of a spring, mass and damper with a weak nonlinear spring. In
this paper the above recipe is applied to a more involved case of three sets of airplane data that have a larger
number of state, measurements and unknown parameters. The flight tests cannot always be conducted in an ideal
situation of the process noise and the measurement noises being white Gaussian as is generally assumed in the
Kalman filter. The measurements may not be available with respect to the center of gravity and possess scale and
bias factors, which will have to be modelled and estimated as well. The coupling between the longitudinal and
lateral motion brings in added difficulty but makes the problem more interesting. It turns out that even a
parameter that strongly affects the airplane dynamics is estimated which vary widely among the approaches. The
RRR has been shown to be better than the earlier approaches in estimating the unknowns. The generalized cost
functions that are introduced in the present work help identify definitive results from deceptive results.

Keywords. Adaptive EKF; longitudinal and lateral flight dynamics; recursive parameter estimation; Cramer

Rao bound.

1. Introduction

In part-1 of this paper an extensive study was carried out
using an adaptive extended Kalman filter (EKF) tuning
procedure called reference recursive recipe (RRR) applied
to the simulated data of a simple spring, mass and damper
system with a weak nonlinear spring. Here we demonstrate
the effectiveness of the RRR in handling more involved
flight test data of airplane longitudinal and lateral motion.
They have many states and measurements and a large
number of aerodynamic parameters to be estimated. Further
the flight tests cannot always be conducted in an ideal sit-
uation of the process noise and the measurement noises
being white Gaussian as assumed in the EKF. The mea-
surements are not available with respect to the center of
gravity and possess scale and bias factors, which will have
to be modeled and estimated as well. The coupling between
the longitudinal and lateral motion makes the problem
difficult and thus more interesting. At times the noisy
measurements from the longitudinal and lateral motion are
input into the longitudinal states. This is another example of

*For correspondence

subjectivity in estimation theory. However the final results
should be meaningful and acceptable no matter whatever
subjective inputs are introduced into the problem formu-
lation and solution.

For airplane flight test data analysis many approaches
have been suggested to handle unknown parameters and the
noise covariances. These are the natural formulation of
Schultz [1], the innovation formulation of Stepner and
Mehra [2], a combined formulation called MMLE3 of
Maine and Iliff [3, 4], the noise accounting approach of
Jategaonkar and Plaetschke [5] and the combined formu-
lation of Ishimoto [6] to solve the practical problems in
natural and innovation formulations. A more detailed dis-
cussion on aircraft flight test data analysis can be found in
Gemson [7], Klein and Morelli [8], Klein [9] and Jate-
gaonkar [10]. There are many formulations for solving an
optimization or estimation problem since the unknowns do
not occur in a simple way in the cost function, and there are
many transformed variables with which one tries to solve
for the basic unknowns [11, 12]. Further the size and the
required compatibility conditions among the transformed
variables lead to the many difficulties not found in the
classical optimization problems.
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1.1 General observations from all the real flight
test data results

The report by Shyam et al [13] contains more examples of
simulated and real flight test data analysis with down
loadable computer programs and data for the benefit of the
readers. Presently only three real flight data analysis is
presented in this Part-2 of the paper.

All the real data studies were run for 100 iterations using
the RRR with Q > 0 since the off-diagonal elements of the
correlation coefficient matrix C reduced substantially than
for Q = 0 and hence all the former estimates are more reli-
able. The convergence of the parameter estimates, the noise
covariances and the cost functions were analysed in terms of
the quantities listed in section 6 of part-1 of the paper.

Tables 1, 3 and 5 provide a comparison of the parameter
estimates along with their CRBs for all the real data studied
by different approaches. The cost functions and the Q and
R estimates from RRR and other approaches are shown in
tables 2, 4 and 6 for the three cases, respectively. Generally
(but not always) the individual R and Q values are the least
and the highest in RRR than from other approaches.
However in all the cases firstly for the RRR approach the
values of (i) J1-J3 are closer to the number of measure-
ments and the product of the estimated R is the smallest,

Table 1. Real flight test data case-1 results (®, gg).
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indicating that the measurement equations are better bal-
anced. Secondly the J6-J8 are closer to the number of
states and the product of the estimated Q is the largest
among all, thus assisting the state equations evolving with
state noise to track the measurements better. Such a nega-
tively correlated behaviour of R and Q is mentioned by
Bohlin [14]. They show that the choice of the filter statistics
for estimating Q and R in the proposed RRR approach is
better than in other approaches.

Unlike in the simulated studies, in all cases it was noticed
that the estimated R and Q noise did not have constant
statistical characteristics across time. Another experiment
was carried out by generating a typical data set by using the
estimated parameter and injecting the estimated Q and R as
additive white Gaussian noise. This is to determine the
effect of non-white and non-Gaussian noise distribution in
the real data on the CRBs. After each iteration in the RRR
the ©, Q and R were reset as from the real data. A similar
experiment was also conducted by updating ©® as well. It
turned out that there is not much of a difference in the final
estimates and the CRBs.

In the subsequent real data studies we use the notations
and equations as in Gemson [7] and Gemson and Anan-
thasayanam [15].

® RRR NASA Gemson MT MS
Cy, 4.6469 (0.0179) 4.9584 (0.1168) 4.7073 (0.039) 4.6978 (0.0229) 4.9141 (0.0422)
Cy;,, 0.0555 (0.0277) 0.3023 (0.1550) 0.1292 (0.0523) 0.1225 (0.0357) 0.4691 (0.0517)
Cr, 0.0162 (0.0032) 0.2189 (0.009344) —0.0064 (0.0048) 0.0160 (0.0018) 0.0184 (0.0021)
Cn, —0.5468 (0.0093) —0.6125 (0.00953) —0.63 (0.0188) —0.5560 (0.0098) —0.5885 (0.0036)
Cu, —19.8027 (0.6692) —22.27 (0.7713) —20.8623 (1.1908) —19.7062 (0.7286) —20.2395 (0.2937)
Cons, —1.1229 (0.0218) —1.2193 (0.02881) —1.2763 (0.0442) —1.1396 (0.0236) —1.1503 (0.0111)
Cino —0.0495 (0.0012) —0.0532 (0.00165) —0.0561 (0.0023) —0.0502 (0.0013) —0.0497 (0.0006)
0o 0.0007 (0.0021) 0.0273 (0.04518) 0.0007 (0.0135) 0.0008 (0.0011) 0.0003 (0.0012)
Cy, 0.2195 (0.0014) 0.2254 (0.008725) 0.2225 (0.0029) 0.2218 (0.0018) 0.2358 (0.0028)
Ca, —0.1398 (0.0153) —0.3639 (0.05328) —0.1023 (0.0214) —0.1401 (0.0185) 0.1265 (0.0197)
Ca, —3.2088 (0.1702) - —3.2397 (0.2430) —3.2088 (0.2070) —3.8625 (0.2376)
Ca,, —0.0651 (0.0134) —0.07 (0.08084) —0.0267 (0.0191) —0.0633 (0.0160) —0.1178 (0.0167)
Ca, —0.0155 (0.0007) —0.0131 (0.004088) —0.0144 (0.0010) —0.0154 (0.0008) —0.0182 (0.0008)
Table 2. Real flight test data case-1 results* (R,Q,J).
R (Ref) Q (Ref) J1-J8 R (MT) Q MT) J1-J8 R (MS) QMS) J1-J8
%1076 x1076 (Ref) %1076 x1076 MT) x1076 x 1070 MS)
4.4752 4.0090 3.3893
0.49 5.1532 0.4107 3.9630 3.2046 3.3866
0.04 0.134 4.6432 0.0312 0.0393 2.9764 37.6770 0.0001 3.2057
0.40 2.287 0.0004 3.9381 2.6418 0.0004 7.5509 0.0015 0.0002
15.98 1.204 —56.2206 94.5086 0.3231 —54.7596 198.2716 0.3456 —49.6223
17.70 2.9551 26.3511 6.6681 28.9841 3.8921
2.9303 6.4985 4.7110
2.5161 2.4562 2.6369

2Cost functions are not close to their expected values in MT and MS methods.
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Table 3. Real flight test data case-2 results (®, gg).
Q] RRR NASA Gemson MT MS
Cr, 4.9235 5.1068 4.9028 4.9260 5.0620
(0.0164) (0.1322) (0.0168) (0.0184) (0.0323)
Ci, 0.1554 0.1909 0.0879 0.1587 0.3594
(0.0271) (0.1602) (0.0267) (0.0302) (0.0508)
Ci, 0.2409 0.2448 0.2529 0.2408 0.2517
(0.0021) (0.009215) (0.0018) (0.0023) (0.0027)
Cun, —0.5293 —0.6474 —0.6174 —0.5285 —0.5590
(0.0079) (0.02339) (0.0211) (0.0082) (0.0055)
Cu, —11.8596 —14.26 —18.8339 —11.8255 —12.5965
(0.2402) (0.6528) (0.8379) (0.2483) (0.1400)
Con, —6.8959 —8.27 —7.1290 —6.8798 —6.6713
(0.4891) (1.296) (1.544) (0.5062) (0.3021)
Cons, —0.9731 —1.1614 —1.1841 —-0.9711 —1.0247
(0.0177) (0.05371) 0.471) (0.0184) (0.0129)
Cng —0.0425 —0.0505 —0.0507 —0.0424 —0.0447
(0.0009) (0.002655) (0.0024) (0.0009) (0.0006)
0o 0.0003 -0.01177 —0.0037 0.0002 —0.0006
(0.0021) (0.02528) (0.001) (0.0011) (0.0007)
Cn, 0.2538 0.2541 0.2503 0.2540 0.2635
(0.0014) (0.008935) (0.0014) (0.0016) (0.0026)
Table 4. Real flight test data case-2 results® (R,Q,J).
R (Ref) Q (Ref) J1-J8 R (MT) Q (MT) J1-J8 R (MS) QMS) J1-J8
x1076 x1076 (Ref) x1076 x1076 MT) x1076 x 1076 MS)
3.9336 3.7662 3.1621
4.2225 4.5191 3.1507
1.241 0.180 3.6162 1.6135 0.2025 3.8384 3.1599 0.00005 2.5900
0.051 2.954 0.0008 0.2395 3.1532 0.0008 37.2424 0.0003 0.0007
0.460 2.646 —44.1347 2.3155 0.6666 —43.7340 9.3413 0.2386 —38.0517
5.668 2.9752 2.9290 4.2266 841.5496 8.4768
2.9760 4.2284 8.4655
2.9070 2.9489 3.0215

#Cost functions are not close to their expected values in MT and MS methods.

2. Analysis of real flight test case-1

The salient features of this aircraft are available in NASA
TM-X 56036 [16] and in NASA TP 1690 [3]. The param-
eters are estimated in dimensionless form. The data set
obtained is for a short period motion excited by the up and
down elevator control input (J, in degrees or ‘deg’) as
shown in figure 1. In general the flight test data are such
that the longitudinal and lateral motions are decoupled.
Some of the available measurements have been used as
inputs in the state equations, which include roll angle (¢,,),
sideslip (f,,), roll rate (p.,), yaw rate (r,,) and the angle of
attack («,) and are shown in figures 2, 3, 4, 5 and 9,
respectively. The state equations (n = 3) for the angle of
attack (o), pitch rate (¢) and the pitch angle (0) are

o= —q—SCL +qg+ g(cos((j)m)cos(am)cos(O) + sin(o,,)sin(0))

mV \%
= By (Pmcos(oty) + rmsin(o,))
§ = Bt Co gt oy 00+ Gy | 4+ 1
=5 e mg, Ve my Y'mPm
q Iyy y m, ZVq Se 0 P
0= gcos(¢,,) — rusin(¢,,) + Oo.
The measurement equations (m = 5) are
q
Oy = O K“MV; qn=¢q; 0, =20,
qS Xo . qS Za, .
an,, = q_CN + = q; dx,, = _q_CA +4
8 mg 8

where
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Table 5. Real flight test data case-3 results (®, gg).

Cr = Cycos(o) — Casin(a) + Cy,
CN = CNQ(X =+ CN% 5(3 + CN0

Q] RRR NASA Gemson MT MS ;
Cy, —04579 —04792 04761 —04541 —0.4642 Ca = a4 Capot + Gy 0+ Cays
GO GO O 000 s e < 1950 = (€4,
" (0.0067)  (0.01955)  (0.0065) (0.0065) (0.0057)  Cimy» Cinyr Cing, s Cinys 00, Cny, Ca, Cary 5 Cay, s Cay) - The ones
Bo —-0.0143 —0.10116  —0.0124 —0.0107 —0.0109 with suffix ‘6, are the control derivatives, the ones with suffix
(0.0048)  (0.00294)  (0.0021) (0.0034)  (0.0009)  zero are the biases and all others are aerodynamic derivatives.
Cy, 00168  —0.0205  —0.0182 —0.0170 —0.0177  The initial states are taken as initial measurement and the initial
c (0(')039?3()) (0'0813%7) (0(')025181; (0(')0;)]02 (0(')0398;’()) parameter values are taken as (4,0.24,0.17,—0.48, —17,
L, —U. —V. —VU. —U. —U. T
7 0.0028)  (0.00713)  (0.0048) (0.0027)  (0.0022) —0.9,-0.05,-0.02,0.175,-0.3,0.03, —0.083, —0.015) ".
Cr, 0.0740 0.0697 0.0731 0.0733 0.0757
(0.0030)  (0.005884)  (0.0066) (0.0028)  (0.0022) Other constant values used for case-1 are as follows:
Ci,, 0.0557 0.0612 0.0622 0.0557 0.0546
(0.0004)  (0.001050)  (0.0007) (0.0004) (0.0003) €= §= m= Ixx = Iyy = Iz =
C,,  0.0072 0.006 0.0089  0.0073  0.0082 R A Z764_2-5
(0.0007)  (0.001252)  (0.0031) (0.0007)  (0.0005) & 322 4031 %3.08 10“_0279 {6’.101 ”_*1_17
C, —0.0020 —0.002 —0.0023 —0.0020 —0.0021
(0.0001) (0.0001467) (0.0003) (0.0001)  (0.0001)
oo 0.0018 0.1506 0.0023 0.0019 0.0019
(0.0027)  (0.07034)  (0.0011)  (0.0012)  (0.0013) 2 1 Remarks on the real data case-1 results
Cw, 0.0656 0.0705 0.0703 0.0657 0.0662
(0.0005)  (0.000478)  (0.0009) (0.0004) (0.0004)  Figures 1-5 show the inputs used in the state equations. The
Cy, —0.0429 —0.046 —0.0557 —0.0473 —0.0596  variations of the absolute value of the estimated initial
(0.0031)  (0.004006)  (0.0039) (0.0023) (0.0021)  parameters and their Py with iterations are shown in fig-
Cy,  —0.0880  —0.1062  —0.0576 —0.0854 —0.1021  yre 6 and similarly in figure 7 for Q and R and in figure 8
(0.0033)  (0.003562)  (0.0045)  (0.0023)  (0.0010) o the cost functions J1-J8. Figures 9 and 10 compare the
Cw,  0.0004 0.0006 0.0033 0.0010 0.0030 measurements with (i) the state dynamics based on the
(0:0005) - (0.0005924)  (0.0006)  (0.0003)  (0.0003) estimated parameters, (ii) the state after measurement
Cn,, —0.0478 —0.0513 —0.048 —0.0476 —0.0502 ’
(0.0008) (0.0009139) (0.0013) (0.0006) (0.0003)  “Pdate and (iii) the smoothed state. o
Cy,  0.0067 0.0072 0.0068  0.0067 0.0069 Another feature of recursive parameter estimation is that
(0.0001)  (0.0001181) (0.0002) (0.0001) (0.00003) it can vary through time instants and point to two distinct
Cy, —0.0259 —0.0242 —0.0251 —0.0221 —0.0228 values as reflected in the estimation of Cy, in figure 11.
(0.0008)  (0.002307)  (0.0007) (0.0008) (0.0007)  This feature of tracking time-varying parameters by the
Cy, —0.2828 0.0821 0.5223 EKF brings in clearly another advantage of sequential
(0.0327) (0.2941)  (0.0710)  processing instead of batch processing of the data by a least
Cy, 02224 —1.2336  —0.8452  squares (LS) procedure. If LS had been used then for the
(0.0281) (0.4470) - (0.1355) parameter (Cy,) only an average value would have been
Cy, 0.0384 0.0011 —0.0017 .
oa obtained.
(0.0047) (0.0026)  (0.0024)

Table 6. Real flight test data case-3 results® (R,Q,J).

R x10°° J1-J8 R (MT) Q (MT) J1-J8 R (MS) Q (MS) J1-J8
(Ref) Q x10%(Ref)  (Ref) x 1076 x1076 (MT) %1076 %1076 (MS)
4.7650 4.3450 4.8127
0.0871 4.8321 4.3888 4.8200
0.0623 42163 3.5272 2.83 3.1039 13.03 0.0005 4.5173
0.2255 5.1340 0.0004 18.86 2.0481 0.0003 88.07 0.0007 0.0003
0.0200 4.9426 —55.0111 3.88 3.7876 —51.3490 45 1.0975 —47.2441
43.8064 1.4324 3.9673 4.09 1.0057 9.3006 36.36 0.0016 7.5931
3.9669 73.6 0.5502 9.3005 60.13 7.5896
3.8171 3.5105 3.9681

2Cost functions are not close to their expected values in MT and MS methods
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=] 10 a1 1= 13 14 15 16 17

Figure 1. Control input (6, in deg) versus time (s).

=] 10 11 1= 13 14 15 16 17

Figure 2. Input roll angle(¢,, in deg) versus time (s).

=) 10 11 12 13 14 15 16 17

Figure 3. Input sideslip (f,, in deg) versus time (s).

=) 10 A A= a3 aa =) 16 a7z

Figure 4. Input roll rate (p,, in deg/s) versus time (s).
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Figure 5. Input yaw rate (r, in deg/s) versus time (s).
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Figure 6. Variation of initial parameters ®, (continuous) and their Py (dashed) with iterations.
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Figure 7. Variation of Q (dashed) and R (continuous) with iterations.
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Figure 8. Variation of different costs (J1-J8) with iterations.

o 10 11 12 13 14 15 16 17

Figure 9. Comparison of the predicted dynamics, posterior, smoothed and measurement ((a) angle of attack (deg), (b) pitch rate (deg/s)
and (c) pitch angle (deg)) versus time.

(a)
T T T T T T h(xd)
----------- h(X+)
1 sl h(Xs)
o =z
o ‘ ‘ ‘ ‘ ‘ ‘ ‘
S) 10 11 12 13 14 15 16 17
0.2 . . : : : : :
0.15 .
0.1 5
0.05 RFETR e
o ‘ ‘ ‘ ‘ ‘ ‘
<) 10 12 13 14 15 16 17

Figure 10. Comparison of the predicted dynamics, posterior, smoothed and measurement in g, (a) normal acceleration and (b) axial
acceleration versus time.
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Figure 11. Variation of the parameter estimate (Cy,) through time instants.
® CNV Cy, e Cl@ me Cm,, Cm,sl, Cmn 00 CNo CA7 CA,AZ CA(SE CAn
Cy, 100 62 0 —18 0 =7 -3 0 32 —1 —-10 —-10 -8
C;, 62 100 0 —10 1 —11 —10 0 93 —4 -2 —16 —15
Cp, 0 0 100 0 0 0 0 0 0 0 0 0 0
Cp, —18 —10 0 100 18 51 31 0 =5 —15 1 —15 -7
Cp, 0 1 0 18 100 76 79 0 1 6 -3 5 2
Con,, =7 —11 0 51 76 100 97 0 -10 -1 -2 —14 —14
(o™ -3 —10 0 31 79 97 100 0 —11 2 -3 —11 —15
0o 0 0 0 0 0 0 0 100 0 0 0 0 0
Cy, 32 93 0 -5 1 —10 —11 0 100 -5 2 —15 —15
Ca, -1 —4 0 —15 6 -1 2 0 -5 100 —83 42 6
Ca, —-10 -2 0 1 -3 -2 -3 0 2 —83 100 =7 16
Ca,, —-10 —16 0 —15 5 —14 —11 0 —15 42 -7 100 91
Ca, -8 —15 0 =7 2 —14 —15 0 —15 6 16 91 100

Table 1 provides a comparison of the parameter esti-
mates along with their CRBs (in parenthesis) for all the real
data studied by different approaches such as MT and MS
with scaled up Py. Since the NASA results are obtained
with Q = 0 only a comparison with other approaches is
valid. Generally the CRBs from the RRR is lower than from
other approaches and at times their lower CRBs is only
fortuitous. The rounded 100C matrix of the parameter
estimates is

Based on the correlation coefficient matrix from RRR for
this case with 13 unknown parameters the weakest can be
inferred as 0y and Cy,, which are almost uncorrelated with all
other parameters. Hence their estimates and uncertainty can
vary widely among the approaches. Next it is possible to group
the parameters as (Ca,, Ca,, ), (Ca,, Ca,), (Crys Cuy, )
(Cm,,Cwm,), (Cny, Cy,, ) and (C,, Cy;, ). The estimation of the
aerodynamic parameters depends on two factors, namely their
representation and the excitation. The first group is highly
correlated since over a range of excitation by the elevator
represented by J, it could have been difficult to discriminate
between the two as seen by the high correlation between them.
A similar behaviour is seen in the second, third, fifth and sixth
groups, the last being not that highly correlated. Though the
fourth group represents the pitching moment the excitation by o
and g helps discriminate them as indicated by the low corre-
lation between them. It is this feature that should be kept in
mind by a designer using the above estimates for further use.

3. Analysis of real flight test case-2

The data set is obtained from NASA TP 1690 [3] by
employing a peculiar manoeuvre where elevator control
input (J, in deg) shown in figure 12 is imparted when
the aircraft (T 37 B) is rolling through a full rotation
about its x-axis during aileron roll. Similar to the earlier
case, the coupling between the longitudinal and lateral
motion is replaced by their measured values, which
includes roll angle (¢,,), sideslip (f,,), velocity (V,,),
roll rate (p,,), yaw rate (r,) and the angle of attack (o,,)
as shown in figures 13, 14, 15, 16, 17 and 21, respec-
tively. The state equations (n = 3) for the angle of
attack (o), pitch rate (¢) and the pitch angle (0),
respectively, are

qS
mVycos(f,,)

8
+ Vicos(B.) (cos(¢,,)cos (o, )cos(0)

+ sin(o,)sin(0)) — tan(B,,) (Pmcos (%) + rwsin(o,))

o = (CLifx—l-CLoe(Se-i-CLo)-i-q

R gSc c [

§= ‘iy_y (szoc + Gy 374+ Cons 39+ Con O + Cmo)
Izz — Ixx
Trmpm

0 = gcos(¢,,) — rmsin(¢,,) + Oo.
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Figure 12. Control input (J, in deg) versus time (s).
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Figure 13. Input roll angle (¢,, in deg) versus time (s).

4 [S3 8 10

12 14 16 18 20

Figure 14. Input sideslip angle (f3,, in deg) versus time (s).

The measurement equations (m = 4) are given by
q
U = Koot = KoXa 175 g = ¢; Om = 0;

qS
Clnm = q—(CNyoc + CN
mg

Se

Xa, .
3¢ + Cu,) —l—fq.

The unknown parameters (p =10) are (Cp,,Cy, ,Cy,,
Conys Cnys gy Cons,  Cong, 00, Cy) " with an approximation
Cy, = Ci, and Cy, = Cy,, . The ones with suffix ‘0,” are
the control derivatives, the ones with suffix zero are the

1499

biases and all others are aerodynamic derivatives. The
initial states are taken as initial measurement and the initial
parameter values are taken as (4,0.15,0.2,—0.5,—11.5,

—5,—-1.38,-0.06,—0.01,0.2)".

Other constant values used for case-2 are as follows:

S=184 m =196 Ixx = Iyy = 3953.2
6892.7

g=2322 ¢=558 K,x, = Xq, = 0.101
—-0.0279

Izz =
10416.4
K, =1
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Figure 15. Input velocity (V,, in ft/s) versus time (s).
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Figure 16. Input roll rate (p,, in deg/s) versus time (s).
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Figure 17. Input yaw rate (r,, in deg/s) versus time (s).

3.1 Remarks on the real data case-2 results

Figures 12—-17 show the inputs used in the state equations.
The variations of the absolute value of the estimated initial
parameters and their Py with iterations are shown in fig-
ure 18 and similarly in figure 19 for Q and R and in fig-
ure 20 for the cost functions J1-J8. Figures 21 and 22
compare the measurements with the (i) the state dynamics
based on the estimated parameters, (ii) the state after
measurement update and (iii) the smoothed state.

Table 3 provides a comparison of the parameter esti-
mates along with their CRBs (in parenthesis) for all the real
data studied by different approaches. Since the NASA
results are obtained with Q = 0 only a comparison with
other approaches is valid. Generally the CRBs from the
RRR is lower than from other approaches and at times their
lower CRBs is only fortuitous. The rounded 100C matrix of
the parameter estimates is
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Figure 18. Variation of initial parameters ®, (continuous) and their Py (dashed) with iterations.
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Figure 20. Variation of different costs (J1-J8) with iterations.
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Figure 21. Comparison of the predicted dynamics, posterior, smoothed and the measurement, (a) angle of attack (deg), (b) pitch rate
(deg/s) and (c) pitch angle (deg)) versus time.
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Figure 22. Comparison of the predicted dynamics, posterior, smoothed and the normal acceleration measurement in g versus time.

Based on the correlation coefficient matrix from RRR for

©® C, C, Cu Cw Cu Cuw Cu, Cu 0o Cy, this case with 10 unknown parameters the weakest can be
. 100 67 41 —19 1 . s s o o Inferred as 0o, whlch is allmost uncorrelated Wlth all other
C, 67 100 64 —11 2 1 ~12 —-13 0 98 parameters. Hence its estimates and uncertainty can vary
C, 41 64 100 -4 -2 5 -5 —7 0 65 widely among the approaches. Next it is possible to group
g:q _119 _211 :; 12050 12050 _737 gi 898 (1) _110 the parameters as (C[\'JO, Cr,, CL(;E., Cr,) and (,CM"f Cu;,» Cu;»
Cp, 1 1 5 70 27 100 8 84 —1 2 Cum,Cum,). As mentioned earlier the estimation of the
Co, —8 —-12 -5 91 21 80 100 99 0 —12  gerodynamic parameters depends on two factors, namely
(():(;"0 _08 _013 _07 808 ? E‘i 909 180 180 _33 their representation and the excitation. Among the above
Cy, 62 98 65 —10 1 2 _12 -13 0 100 group4 and 5 parameters this feature should be kept in mind

by a designer using the above estimates for further use.



Kalman filter statistics part-2: real data studies

4. Analysis of real flight test case-3

The data set is obtained from NASA TP 1690, which

1503

. qS b b
ﬁ = % < y/,ﬁ+ Cypﬁp+ Cy,.ﬁr+ Cym,éa + CY(»(S' -+ ﬁo)

+ %sin(d))cos(@m) + psin(a,,) — rcos(o,)

describes the lateral motion of an oblique wing aircraft with Ix GSh = =
. . . . _ X _g9ob < < S, 4+C. 8. +C

zero wing skew excited by the control input (3, and §, in T~ Tox \CLbP + Cr5pp + Crgpr+ Cry da + Cuy 00 + Gy
deg) as shown in figure 23. Similar to the earlier case, the JrIyy —Izz N Izx

. . . . . —"qm T 5 Pqm
coupling between the longitudinal and lateral motion is ) e T
replaced by their measured values, which includes pitch ¢ = p + gtan(0m)sin(¢) + rtan(0m)cos(¢) + ¢y
angle (0, in rad), pitch rate (q,,? in rad/s) and the angle of . _ [ _ g5b <CN,f Bicy, b p+C, b, 4 Cyy 80+ Cry 6, + CN(,)
attack (o, in rad) as shown in figures 24, 25 and 26, Izz Iz 2v 2v
respectively. The state equations (n = 4) for the angle of +IM; b Y pain — ;ﬁrqm.

2 2

sideslip (f3), roll rate (p), roll angle (¢) and yaw rate (r) are

—10 |

—151

—2Q

30

a0 45

35

Figure 23. Control input (J,,d, in deg) versus time (s).

o
G0 a0 0 N 0 e 0o
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Figure 24. Input pitch angle (6,, in deg) versus time (s).

35 40 45

Figure 25. Input pitch rate (g, in deg/s) versus time (s).
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Figure 26. Input angle of attack (o, in deg) versus time (s).
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Figure 27. Variation of initial parameters ®, (continuous) and their Py (dashed) with iterations.

The measurement equations (m = 5) are given by

P r
Bu=58- Kpzp, + Kpxp s pm = p; G =0; tm=r;
qS b b
D = g (CYnﬁ +Cy, 5P+ Cr 5y 1+ Cr,, 00+ Cy, 0, + C,
Zay . Xa
—2p 4+
8 8

The unknown parameter set (p = 20) is ® = (Cy/,,CyM
Bo, Cr,, C1,, C1,, Cu,,, Cr,., Cry, o, Cnys Cw,,  Cw,, Ch;, s
Cw;,» Cy, Cyy» Cy,, Cy,, Cy, )'. The ones with suffix ‘d,’
and ‘0,” are the control derivatives, the ones with suffix
zero are the biases and all others are aerodynamic deriva-
tives. The initial states are taken as initial measurement and
the initial parameter values are taken as (—0.5,0.1, —0.01,
0.01,-0.35,0.01,0.06,0.01, —0.002,0.002,0.07, —0.055,

—0.05,0.003, —0.04, 0.0068, —0.025,0.5, —1,0.005)".

Other constant values used for case-3 are as follows:

q= S = m = Ixx = Iyy = Izz = Izx =
865.3 9.3 387.7 314 488 698 69

V= g= b= K/;Z/j = K/;X/; = Za, = Xay =
39.41 9.81 6.81 0.305 2.73 —0.098 0.651

4.1 Remarks on the real data case-3 results

Figures 23-26 show the inputs used in the state equations.
The variations of the absolute value of the estimated initial
parameters and their Py with iterations are shown in fig-
ure 27 and similarly in figure 28 for Q and R and in fig-
ure 29 for the cost functions J1-J8. Figures 30-32 compare
the measurements with the (i) the state dynamics based on
the estimated parameters, (ii) the state after measurement
update and (iii) the smoothed state.

Table 5 provides a comparison of the parameter esti-
mates along with their CRBs (in parenthesis) for all the real
data studied by different approaches. Since the NASA and
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Figure 28. Variation of Q (dashed) and R (continuous) with iterations.
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Figure 29. Variation of different costs (J1-J8) with iterations.
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30 35 40 a5 50
Figure 30. Comparison of the predicted dynamics, posterior, smoothed and the measurement in deg, (a) sideslip and (b) roll angle,

versus time.

Gemson'’s results are obtained with Q = 0 and with fewer  other approaches and at times their lower CRBs is only
(17) parameters only a comparison with other approaches is  fortuitous. The rounded 100C matrix of the parameter
valid. Generally the CRBs from the RRR is lower than from  estimates is
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© Bo ¢o | Cr, | CrL, | CL, | Cp, CL, Cr, | Cn, | On, | C, Cn; Cn, Cn, | Cy, | Cy, | Oy, | Cy, Cy, Cy,
Bo 10| 1] 0] 0] 0] 0 1 [0 ]0 020 1 8|3 [0 9 1] 1516
b0 1 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Cr, 0 0 100 17 12 11 3 12 28 -5 -3 3 -1 -3 -6 -1 -1 1 0 -1
C,, [0 [0 1w |100] 3 | s 8 | 1| 5] 2] 1] 22| 20 1] 501 4] 00
Co, [0 012 3 [100] 2|6 | 57| 3] 1] 28] 0 | 17|16 10 6] 0 | 4] 3
Cn. |0 O | 1| sa] 2100 3| 63 240 2 1 [ 2 [1][4]0] 5010
Cr, 1 0 3 8 62 3 100 96 1 2 17 1 29 27 0 0 4 0 6 6
Cr, 0 0 12 1 57 6 96 100 3 0 16 2 27 29 1 0 3 0 6 6
Cv, |0 [0 | 28] 5] 8] 3 [ 1] 3o x| 2] 0] 3 [ 12| 2] 4] 3|3 | 1] 3
Cv, |0 | 0| 5] 20 1| 20| 2|0 [i7]1w00]| 3 | 4| s | 1 | 5] 22 119 2] 0
Cv. | 2 [0 3 1|28 0 [ 17|16 12| 3 [100] 2 | 62 | 57| 8] 1] 27| 0 | 16] 15
Cy, 0 0 3 24 0 29 1 2 ~11 | -84 -2 100 -3 -6 3 19 0 -22 1 2
Cn; 4 0 1 2 17 1 29 27 3 8 62 3 100 96 1 2 17 1 26 25
Cn, 8 0 3 0 16 2 27 29 12 1 57 6 96 100 3 0 15 1 25 26
Cy, | 3 | 0] 6] 1] 1] 1 0 | 1| 2] 5] 3] 8 1 1] slwojai| 7] 6] 318
Cy, |0 |0 1] 5] 0] 4] 0|0 42| 1] 19| 20 J20][100] 3| 9] 9 |3
Cv. | 910 1[0 6] 0 43 3 1|2 0 [ 7|15 |73 [100] 2] 6d] 60
Cy, 1 0 1 4 0 5 0 0 3 19 0 22 1 1 16 90 2 100 5 7
Cy, 15 0 0 0 4 0 6 6 1 2 16 1 26 25 3 9 64 5 100 96
Yy 16 0 -1 0 3 0 6 -6 -3 0 15 2 25 —26 18 3 —60 -7 -96 | 100
(@)
40 . . .
h(Xd)
20+ . FR | h(X+) |
h(Xs)
ol - h o Z
20} .
_40 ‘ ‘
30 35 40 45 50
(b)
20 T T
10 B
0 — W —
—10} 4
_ 50 ‘ ‘
30 35 a0 a5 50

Figure 31. Comparison of the predicted dynamics, posterior, smoothed and the measurement in deg/s, (a) roll rate and (b) Yaw rate,

versus time.
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Figure 32. Comparison of the predicted dynamics, posterior, smoothed and the measurement in g (lateral acceleration) versus time.

Based on the correlation coefficient matrix from RRR for

this case with 20 unknown parameters the weakest can be
inferred as f; and ¢, which are almost uncorrelated with
all other parameters. Hence their estimates and uncertainty
can vary widely among the approaches. Next it is possible
to group the parameters into three sets as the parameters in
the three sets (CLI“ CL, ,Cr,, CL(;“ s CL(;,, CLO), (CNﬁ, CN[ ,Cn,,

CN CN&, s CNO) and (C)/ﬂ7 Cyp, Cyr, CY y CYA‘,’ Cyo), All have

8a? da

very similar correlations among themselves as seen in the
thick blocks of matrices and the reason is as follows. There
is coupling of the dynamical motion due to the states and
the controls. If a certain state or control is excited relatively
higher than others then the estimated parameter that mul-
tiplies it will have lower correlation with other estimates in
the set and vice versa. Since the parameter sets are similarly
excited all of them have similar correlation coefficient
matrices. As mentioned earlier the estimation of the
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aerodynamic parameters depends on two factors, namely
their representation and the excitation. Among the above
group of six parameters this feature should be kept in mind
by a designer using the above estimates for further use.

5. Conclusions

The reference recursive recipe (RRR) is applied to the more
involved cases of three sets of real airplane flight test data,
which have a larger number of unknowns. A closer look at
the correlation coefficients in such studies of estimating the
unknown parameters indicates the necessity of processing
the data by including the process noise Q in addition to the
measurement noise R. Generally the parameter estimates
across the various approaches are close but their CRB can
vary much more among them. In particular the generalized
cost functions based on balancing the state and measure-
ment equations using the many filter outputs introduced in
the present work help show the RRR to be more reliable
than the earlier approaches.
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