MTH201 2021-2022 SEM 1; MIDSEM EXAM

INSTRUCTOR: SANTOSH NADIMPALLI

Instructions:

(1) You can only use concepts and results, introduced and proved respectively, in this course to answer the following questions.
(2) Partial scores will be given only for a complete and correct statement, if they are relavent to the solution of the final problem.
(3) No partial scores will be given for questions with less than 4 points.
(4) I reserve the right to give zero score if two candidates produce the exact same answers.
(5) You are suggested to restrict your answers to one side of a page for each question.
(6) Please remember that there are 2 pages in this question paper.
(7) Note that the set $\{1,2, \ldots, n\}$ is denoted by $[n]$. For any finite set X, we denote by $|X|$, the cardinality of X. I will continue to use notations from my lecture notes.
(8) For me null space of a matrix $M \in M_{m \times n}(F)$ is the kernel of the map $T_{M}: M_{n \times 1}(F) \rightarrow M_{m \times 1}(F)$, given $X \mapsto M X$.

1. Fields and vector space definitions

Let F be any field and let E be a field containing F. Let V be a finite dimensional vector space over a field F. Let V^{\vee} be the dual vector space, i.e., the space $\operatorname{Hom}_{F}(V, F)$.
1.1. (2 points). Is there a unique \mathbb{C} vector space structure on \mathbb{R}^{2} such that restriction of scalar multiplication to real numbers is the standard \mathbb{R}^{2}.
1.2. $(2+3$ points $)$. Let V_{E} be the space $\operatorname{Hom}_{F}\left(V^{\vee}, E\right)$. For any $\alpha \in E$ and $l \in V_{E}$, we define $(\alpha * l) \in V_{E}$, by setting

$$
(\alpha * l)(v)=\alpha l(v), \text { for all } v \in V^{\vee}
$$

Show that the scalar multiplication $*$ makes V_{E} a E-vector space. Show that V_{E} is a finite dimensional E-vector space whose dimension is equal to $\operatorname{dim}_{F}(V)$.
1.3. (3 points). Does there exists $M \in M_{7 \times 7}(\mathbb{R})$ such that $M^{2}=-7 I_{7}$. Here, I_{7} is the identity matrix in $M_{7 \times 7}(\mathbb{R})$.

2. Linear transformations

2.1. (10 points). Let S be a subset of $M_{n \times n}(\mathbb{Q})$. Show that there exists a non-zero $X \in M_{n \times 1}(\mathbb{Q})$ such that $M X=X$ for all $M \in S$ if and only if there exists a non-zero $Y \in M_{n \times 1}(\mathbb{R})$ such that $M Y=Y$ for all $M \in S$.
2.2. (5 points). Let $a_{0}, a_{1}, a_{2}, \ldots, a_{n}$ be non-zero rational numbers. Let $q \in \mathbb{Q}[t]$ be a polynomial. Show that there exists $p \in \mathbb{Q}[X]$ such that

$$
a_{0} p+a_{1} \frac{d p}{d t}+a_{2} \frac{d^{2} p}{d^{2} t}+\cdots+a_{n} \frac{d^{n} p}{d^{n} t}=q
$$

3. Bilinear forms and combinatorics

3.1. (2 points). Let \mathbb{F}_{2} be the field with exactly 2 elements. Let V be an n-dimensional vector space over the field \mathbb{F}_{2}. Show that there exists a non-degenerate symmetric bilinear form on V. Let $B: V \times V \rightarrow \mathbb{F}_{2}$ be a non-degenerate symmetric bilinear form. If U is a subspace of V such that $B(v, w)=0$, for all $v, w \in U$, then show that $\operatorname{dim}(U) \leq \operatorname{dim}(V) / 2$.

Date: 14/09/2021.
3.2. (6 points). Consider the following set:

$$
Y=\left\{X_{1}, X_{2}, \ldots, X_{m}: X_{i} \subseteq[n] \forall i \in[m]\right\}
$$

If $\left|X_{i} \cap X_{j}\right|$ is even for all pairs (i, j) with $i, j \in[m]$, then show that $m \leq 2^{[n / 2]}$, where $[x]$ is the greatest integer less than or equal to x.
3.3. (2 points). Let $M \in M_{m \times n}(\mathbb{R})$ and let $M^{t} M=J+D$, where J is a matrix with all its entries equal to 1 , and D is a diagonal matrix with all positive entries. Show that the null space of M is the zero subspace.
3.4. (5 points). Let $Y=\left\{X_{1}, X_{2}, \ldots, X_{m}: X_{i} \subseteq[n] \forall i \in[m]\right\}$. Assume that for any $i \neq j$, we have $\left|X_{i} \cap X_{j}\right|=c$, where $1 \leq c<n$. Show that $m \leq n$. (Hint: Consider an $n \times m$ matrix $M=\left(m_{i j}\right)$ where $m_{i j}=1$ if $i \in X_{j}$ and $m_{i j}=0$ if $\left.i \notin X_{j}\right)$.

