MTH201 2021-2022 SEM 1; MIDSEM EXAM

INSTRUCTOR: SANTOSH NADIMPALLI

Instructions:

- (1) You can only use concepts and results, introduced and proved respectively, in this course to answer the following questions.
- (2) Partial scores will be given only for a complete and correct statement, if they are relavent to the solution of the final problem.
- (3) No partial scores will be given for questions with less than 4 points.
- (4) I reserve the right to give zero score if two candidates produce the exact same answers.
- (5) You are suggested to restrict your answers to one side of a page for each question.
- (6) Please remember that there are 2 pages in this question paper.
- (7) Note that the set $\{1, 2, ..., n\}$ is denoted by [n]. For any finite set X, we denote by |X|, the cardinality of X. I will continue to use notations from my lecture notes.
- (8) For me null space of a matrix $M \in M_{m \times n}(F)$ is the kernel of the map $T_M : M_{n \times 1}(F) \to M_{m \times 1}(F)$, given $X \mapsto MX$.

1. FIELDS AND VECTOR SPACE DEFINITIONS

Let F be any field and let E be a field containing F. Let V be a finite dimensional vector space over a field F. Let V^{\vee} be the dual vector space, i.e., the space $\operatorname{Hom}_F(V, F)$.

1.1. (2 points). Is there a unique \mathbb{C} vector space structure on \mathbb{R}^2 such that restriction of scalar multiplication to real numbers is the standard \mathbb{R}^2 .

1.2. (2+3 points). Let V_E be the space $\operatorname{Hom}_F(V^{\vee}, E)$. For any $\alpha \in E$ and $l \in V_E$, we define $(\alpha * l) \in V_E$, by setting

$$(\alpha * l)(v) = \alpha l(v), \text{ for all } v \in V^{\vee}.$$

Show that the scalar multiplication * makes V_E a *E*-vector space. Show that V_E is a finite dimensional *E*-vector space whose dimension is equal to $\dim_F(V)$.

1.3. (3 points). Does there exists $M \in M_{7\times7}(\mathbb{R})$ such that $M^2 = -7I_7$. Here, I_7 is the identity matrix in $M_{7\times7}(\mathbb{R})$.

2. Linear transformations

2.1. (10 points). Let S be a subset of $M_{n \times n}(\mathbb{Q})$. Show that there exists a non-zero $X \in M_{n \times 1}(\mathbb{Q})$ such that MX = X for all $M \in S$ if and only if there exists a non-zero $Y \in M_{n \times 1}(\mathbb{R})$ such that MY = Y for all $M \in S$.

2.2. (5 points). Let $a_0, a_1, a_2, \ldots, a_n$ be non-zero rational numbers. Let $q \in \mathbb{Q}[t]$ be a polynomial. Show that there exists $p \in \mathbb{Q}[X]$ such that

$$a_0p + a_1\frac{dp}{dt} + a_2\frac{d^2p}{d^2t} + \dots + a_n\frac{d^np}{d^nt} = q.$$

3. BILINEAR FORMS AND COMBINATORICS

3.1. (2 points). Let \mathbb{F}_2 be the field with exactly 2 elements. Let V be an n-dimensional vector space over the field \mathbb{F}_2 . Show that there exists a non-degenerate symmetric bilinear form on V. Let $B: V \times V \to \mathbb{F}_2$ be a non-degenerate symmetric bilinear form. If U is a subspace of V such that B(v, w) = 0, for all $v, w \in U$, then show that $\dim(U) \leq \dim(V)/2$.

Date: 14/09/2021.

3.2. (6 points). Consider the following set:

$$Y = \{X_1, X_2, \dots, X_m : X_i \subseteq [n] \ \forall i \in [m]\}.$$

If $|X_i \cap X_j|$ is even for all pairs (i, j) with $i, j \in [m]$, then show that $m \leq 2^{[n/2]}$, where [x] is the greatest integer less than or equal to x.

3.3. (2 points). Let $M \in M_{m \times n}(\mathbb{R})$ and let $M^t M = J + D$, where J is a matrix with all its entries equal to 1, and D is a diagonal matrix with all positive entries. Show that the null space of M is the zero subspace.

3.4. (5 points). Let $Y = \{X_1, X_2, \ldots, X_m : X_i \subseteq [n] \ \forall i \in [m]\}$. Assume that for any $i \neq j$, we have $|X_i \cap X_j| = c$, where $1 \leq c < n$. Show that $m \leq n$. (Hint: Consider an $n \times m$ matrix $M = (m_{ij})$ where $m_{ij} = 1$ if $i \in X_j$ and $m_{ij} = 0$ if $i \notin X_j$).