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1. Lecture: Groups as symmetries

In mathematics we study many structures and often the symmetries of these structures determine the
underlying geometry. In this lecture we will study the symmetries of some regular polyhedron in Euclidean
spaces. For any X in Rn, let W (X) be the set

{T ∈ O(n) : T (x) ∈ x, for all x ∈ X}.

If the span of X is equal to Rn, then clearly W (X) is a finite set. From a structural point of view, the set
W (X) has the following properties: the identity element belongs to W (X), given any two element T1 and T2,
the element T1T2 belongs to W (X), and finally T1(T2T3) = (T1T2)T3, for any three linear operators T1, T2, T3.
We will later call any set G with a binary operator which satisfies these three conditions as a group. In this
lecture, we will just concentrate on the structure of W (X), for some interesting W (X).

Let X be a regular n-gon in R2. Let σ be an element of W (X) with det(σ) = −1. Let τ be any reflection
of the plane which preserves X, and such an element obviously exists. Then, the element τσ has determinant
1, and thus a rotation of the plane. All rotations of a plane which preserve X are generated by the rotation
linear transformation θ : R2 → R2 with angle of rotation 2π/n. Thus, the set W (X) is equal to

{τ iθj : i ∈ {0, 1}, j ∈ {0, . . . , n− 1}}.

Note that

τθ = θ−1τ. (1.1)

The above identity completely determines what happens when you multiply τ iθj with τ lθl. Now, given a
set of symbols

{1, θ, θ2, . . . , θn−1, τ, τθ, . . . , τθn−1}
there exists a unique associative multiplication on the above set which satisfies the condition (1.1). Thus the
above list of symbols is the abstraction of the set of symmetries of a regular n-gon (see figure 1).

Let us now consider a tetrahedron X ∈ Rn with its centre of mass at the origin.

How do we describe the set W (X)?
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Figure 1. Generators
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Figure 2. π-Rotation

Any element of W (X) with determinat 1 must preserve a line called the axis of rotation. We denote by Rl,θ,
the rotation of the three dimensional euclidean space R3 with l as the axis of rotation–passing through the
origin–and θ is the angle of rotation in l⊥. If l is a line joining a vertex to the barycentre of the opposite
face, then Rl,2π/3 belongs to W (X). Let us fix such an axis l and let ι be the element Rl,2π/3. We may
imagine a tetrahedron as vertices from two opposite faces of a cube. This provides with another rotation,
say we denote it by κ (see figure 2).

This section is to be completed sometime soon.

2. Formal introduction to groups

2.1.

Definition 2.1. A group is a pair (G, .), where G is a set and “.′′ is a binary operation. which satisfies the
following conditions

(1) (Existence of identity) There exists an element e ∈ G such that e.g = g.e = 1,
(2) (Existence of inverse) For any g ∈ G, there exists an element g′ such that g.g′ = g′.g = e
(3) (Associative law) For any g1, g2 and g3 in G, we have g1.(g2.g3) = (g1.g2).g3.

Note that an inverse of an element g ∈ G is unique and is denoted by g−1 (It is worth proving this for
yourself). The previous section provides a plethora of examples. However, let us recall a list of examples to
work with. Notationally the “.′′ will be dropped in most circumstances.

(1) The set of numbers with usual addition Z, Q, R, C, any vector space V with its additive structure
are examples of groups. These are examples of abelian groups. An abelian group in addition to
the above axioms on sets satisfies

g1.g2 = g2.g1, g1, g2 ∈ G.
(2) Let N be a positive integer and let Z/NZ be the set {0, 1, 2, . . . , N − 1}. For any a, b ∈ Z/NZ, we

denote by a.b the unique integer c ∈ Z/NZ such that N |a+ b− c. It is traditional practice to replace
“.′′ notation for + in this example to continue the + operation in Z.

(3) If X is a regular n-gon, we denote by Dn the group W (X), the group W (X) is discussed in detail
from the previous section.

(4) Let [n] be the set of integers {1, 2, . . . , n}. Let Sn be the set of bijections from [n] to the set [n]. Note
that Sn is a group for the group operation being the composition of functions.

(5) The set of invertible linear transformations of a vector space V , denoted by GL(V ), together with
the composition of operators is an example of a group. If V is a finite dimensional example, we
have several other related groups, like SL(V ), the group of invertible linear transformations with
determinant 1; if B : V × V → k is a bilinear form then the set of orthogonal linear transformations,
denoted by O(V,B) is also a group under composition of linear transformations. In this example we
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motivate the defintion of a subgroup. A subset H is a subgroup of a group G if e ∈ H and for any
two elements h1, h2 ∈ H, the element h1h2 ∈ H. Note that SL(V ) and O(V,B) are subgroups of
GL(V ). When k is a finite field, the groups SL(V ), O(V,B) are interesting examples of finite groups.

A group homomorphism is a map φ : G1 → G2 such that φ(g1g2) = φ(g1)φ(g2), for all g1, g2 ∈ G and
φ(e1) = e2, where e1 and e2 are identity elements of G1 and G2 respectively. Connected with any group
homomorphism φ : G1 → G2, we may associate a subgroup of G1, namely ker(φ) = {g ∈ G1 : φ(g) = e2},
and a subgroup of G2 being the image of the map φ. Clearly, φ is injective if and only if ker(φ) = {e1}. If
img(φ) = G2, i.e., if φ is surjective, then φ−1 exists and can be easily verified to be a group homomorphism.
Two groups G1 and G2 are said to be isomorphic if there exists two group homomorphisms φ1 : G1 → G2

and φ2 : G2 → G1 such that φ1φ2 = id and φ2φ1 = id. If there exists a group homomorphism φ : G1 → G2,
such that ker(φ) is trivial and img(φ) = G2, then G1 and G2 are isomorphic via the group homomorphisms
φ and φ−1.

2.2. The most important phenomena in group theory are understood from realising a group occurring as
symmetries of some set. We now formally introduce the concept of group actions.

Definition 2.2. Let G be a group and let X be a set. A group G acts on the set X if and only if for any
g ∈ G, there exists a map ρg : X → X such that ρe = idX , and ρg1g2 = ρg1ρg2 , for all g1, g2 ∈ G.

It follows immediately that the maps ρg is a bijection and giving the action of a group G on a set X is
equivalent to saying that there is a group homomorphism ρ : G → Aut(X), where Aut(X) is the group of
bijection with the group structure being composition of maps. For simplicity we denote by ρg(x) as gx. The
action of a group G on a set X should be understood as a particular flow of points on a set X. Given a
group action on a set X, we may define a relation on a set X by setting x ∼ y if there exists a g ∈ G such
that ρg(x) = y; the group axioms imply that the relation ∼ is an equivalence relation. Thus we get that

X =
∐
i∈I
Oi,

here I is some indexing set and OI is an equivalence class and also called as orbit. To indicate the geometric
nature of the above concepts, we describe the following examples. If |I| = 1, then G is said to act transitively
in other words for any two x, y ∈ X, if there exists a g ∈ G such that gx = y. It is obvious that G acts
transitively on any of the orbits.

If G acts transitively on any set X, then we may choose an element x ∈ G and define a map

φ : G→ X, g 7→ g.x, g ∈ G.
Note that G =

∐
y∈X φ

−1(y). Note that φ−1(x) is a subgroup of G. Explicitly,

φ−1(x) = {g ∈ G : g.x = x}.
The set φ−1(x) is called the stabilizer of x. For any other y ∈ X, choose a g ∈ G such that gx = y. Such
a g exists because G acts transitively on X. Now, for any g′ ∈ φ−1(y), we get that gx = g′x. Thus, we get
that g′ ∈ gh, where h ∈ Gx. If we denote the set gh : h ∈ Gx by gGx, then φ−1(y) = gGx. Thus, there exists
elements gy ∈ G, for all y ∈ X such that

G =
∐
y∈X

φ−1(y) =
∐
y∈Y

gyGx.

Moreover, gy1Gx ∩ gy2Gx is empty set. The above decomposition is the most fundamental tools in group
theory and we shall demonstrate several important consequences.

2.2.1. The group G acts on itself in some interesting ways. We will first consider the following three actions:
left multiplication, right multiplication and conjugation actions: for g ∈ G, we denote by lg : G → G, the
map lg(h) = gh and rg : G→ G, the map rg(h) = hg−1. Let adg : G→ G be the map adg(h) = ghg−1. Note
that the associations g 7→ lg, g 7→ rg and g 7→ adg are group actions.

There are some immediate consequences of these facts: Note that the map G 7→ Aut(G), where Aut(G) is
the set theoretic bijections of G, is an injective map. If G is a finite group, then G is isomorphic to a subgroup
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of the symmetry group Sn, where n = |G|. This n may not be optimal element. For example dihedral group
embeds into S2k. However, the size of S2k is 2k!, which is roughly e2k and D2k has size 2k.

Consider a finite group G. The conjugation action of G on G is the association g 7→ adg. Equivalence
classes for this action are called conjugacy classes and are of the form {ghg−1 : g ∈ G} for some h ∈ G; we
denote by Oh the conjugacy class which contains the element h. We note that |Oh if and only if hg = gh,
for all g ∈ G. The set of elements h ∈ G such that gh = hg forms a subgroup and is called the centre of G,
to be denoted by Z(G). The G stabilizer for this action is called the centraliser of h, denoted by CG(h);

CG(h) = {g ∈ G : gh = hg}.

Hence the cardinality of G is equal to |G|/|CG(h)|. Thus if we pick hi ∈ Oi, we get that

|G| = |Z(G)|+
∑
|Oi|>1

|G|
|CG(hi)|

. (2.1)

The above formula is sometimes called the class equation. If G is a finite group of cardinality pn, for some
prime number p, then we get that p||Z(G)|.

2.2.2. Let us consider a group G and a subgroup H of G. The group H acts on G via left multiplication.
Note that any orbit for this action is of the form Hg, for some g ∈ G. There exists a family of {gi : i ∈ I}
such that

|G| =
∐
gi

Hgi. (2.2)

Being an equivalence classes, Hg1 ∩ Hg2 is either empty or Hg1 = Hg2. Note that the map g 7→ gg−11 g2
induces a bijection between Hg1 and Hg2. If |I| < ∞, then H is said to have finite index in G. If G is a
finite group and if H is a subgroup of G, then |G| = |I||H|. Thus, |H| divides the cardinality of |G|. The
set of cosets {Hgi : i ∈ I} is denoted by G/H. As an immediate application, any group of prime cardinality,
i.e., |G| is a prime number say p, is cyclic. Since, the group generated by any non-trivial element must be
the whole group.

2.2.3. The group G acts on the set of cosets G/H, by right multiplication r̄g(Hgi) = Hgj , where gig ∈ Hgj
(it is advised to check that this is a group action). The kernel of the homomorphism r̄ : G → Aut(G/H)
given by g 7→ r̄g is given by ⋂

g∈G
gHg−1.

If this subgroup is the trivial group, then r̄g embeds G as a subgroup of much smaller symmetric group
S|G/H|.

2.3. In this section, we will discuss a certain group structure on the set of cosets G/H, when H satisfies
some conditions. Let us consider two cosets Hg1 and Hg2 and say we get a product

Hg1Hg2 = Hg1g2.

However, we need to check that the above definition does not depend on the choice of the family {gi : i ∈ I}.
Assume that Hg1 = Hg′1 and Hg2 = Hg′2. Notice that

g1 = h1g
′
1, g2 = h2g

′
2.

Hence we have,

g1g2 = h1g
′
1h2g

′
2 = h1g

′
1h2(g′1)−1g′1g

′
2.

If g′1h2(g′1)−1 ∈ H, then we get that Hg1g2 = Hg′1g
′
2. Thus we make the following definition:

Definition 2.3. A subgroup H of a group G is called normal if for any g ∈ G and h ∈ H, the elements
ghg−1 ∈ H.
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Figure 3. First Isomorphism theorem

Thus, if H is a normal subgroup of G, then the set of cosets G/H becomes a group via the binary operation:

Hg1.Hg2 = Hg1g2.

Moreover, we have a homomorphism π : G → G/H, given by g 7→ Hg. Note that the kernel of the above
homomorphism is equal to H.

Next we begin with arbitrary homomorphism φ : G→ G. Note that the group ker(φ) is a normal subgroup
of G. Hence, normal subgroups arise as kernels of group homomorphisms. Let N be a normal subgroup of
G which is contained in ker(φ). Then we can construct φ̃ such that the following map in figure 3 commutes:

The map φ̃ is given by setting φ̃(gN) = φ(g). If gN = g′N , then g−1g′ ∈ N , and in particular g−1g′ ∈ N .

Thus, we get that φ(g) = φ(g′) and the map φ̃ is well defined. In particular if N is equal to ker(φ) we get that

φ̃ : G/ ker(φ)→ img(φ) is an isomorphism. It is an exercise to show that there is a one to one correspondence
between subgroups of G which contain N and subgroups of G/N . The correspondence being

H 7→ π−1(H).

Let H and K be two subgroups of G such that H is a normal subgroup of G. Then the set HK = {hk :
h ∈ H, k ∈ K} is a subgroup of G. Moroever, we have

HK/H ' K/K ∩H.

The isomorphism being kH 7→ k(K ∩H).

2.4. Let G be a finite group and let x ∈ G be any element such that x 6= id. The least positive integer n such
that xn = id is called the order of x. If x 6= e is an element of order n, then we get a natural isomorphism

Z/nZ→ G, 1 7→ x.

The image of the isomorphism being {e, x, . . . , xn−1}. Any group G such that G = {xk : k ≥ 0} is called a
cyclic group. If G is a finite group, then G is isomorphic to Z/|G|Z, otherwise G is isomorphic to Z.

If p is any integer such that p||G|, then we can show that G has an element of order p in G; this result
sometimes goes by the name Cauchy’s theorem. Let us give two different proofs of this fact. The first one
uses the class equation (2.1). Let us try to use induction on the cardinality of G to prove this statement.
To describe the induction step, we observe that if p 6 ||G|, then p 6 ||G|/|CG(hi)|, for some hi. Note that
|G| < |CG(hi)|1 and hence we are done by induction hypothesis. Assume that p||Z(G)|, and we are again
done if |Z(G)| < |G|. Thus, we need to prove this result for just abelian groups. Let G be a finite abelian
group such that p||G|. I leave it an exercise to prove this result for cyclic groups. In general consider any
element x such that H = {e, x, . . . , xk} is a proper subset of G. Then, we have a surjective homomorphism

π : G→ G/H.

such that |G/H| < |G|. We may as well assume that p 6 ||H|. Now, consider an element y ∈ H such that
order of y is p. Let ỹ ∈ π−1(y). Now, the group K = {ỹk : k ≥ 0} is a cyclic subgroup of G such that p||K|.
Thus, there exists an element z of order p from the cauchy’s theorem for cyclic groups.
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2.5. Finally, it is time to discuss different ways to construct groups starting with given sequence of groups.
Given a family groups {Gi : i ∈ I}, then we can consider∏

i∈I
Gi := {f : I → ∪Gi : f(i) ∈ Gi}.

The above set is a group by defining [f1.f2](g) = f1(g)f2(g). If I is a finite set
∏
i∈I Gi just constitutes the

set of n-tuples {(g1, . . . , gn) : gi ∈ Gi} and the product structure being coordinate wise multiplication. Note
that Gi embeds in

∏
i∈I Gi by setting g 7→ fg, where fg(i) = g and fg(j) = ej , for i 6= j. Here, ej is the

identity element of Gj . By abuse of notation, we say that Gi is a subgroup of
∏
i∈I Gi. If I = {1, 2}, then

G1 is identified by {(g, e2) : g ∈ G1} and G2 is identified by {(e1, g) : g ∈ G2} and G1 ×G2 is equal to G1G2

via this identification. Note that G1 and G2 commutes with each and has trivial intersection.

Let G be a group and let H and K be two subgroups of G such that K normalises H, i.e., khk−1 ∈ H, for
all k ∈ K and h ∈ H. This is just saying that K is contained in the largest subgroup of G which normalises
H, i.e, K ⊆ NG(H) where

NG(H) = {g ∈ G : ghg−1 ∈ H,h ∈ H}.
Note that the set KH is a subgroup of G, as

k1h1k2h2 = k1k2(k2)−1h1k2h2, k2(k2)−1h1 ∈ H.
Moreover, if K centralises H, i.e., if khk−1 = h, for all k ∈ K and h ∈ H, and if K ∩H is trivial group then
the map

K ×H → KH; (k, h) 7→ kh

is an isomorphism.

2.6. In this section, we will prove a range of results which will be called Sylow’s theorems. Let G be a finite
group of cardinality pkn, where (p, n) = 1. Any subgroup G with pk cardinality is called a p-Sylow subgroup
of G.

Theorem 2.4. Let G be a finite group and let |G| = pkn, where (p, n) = 1. Then there exists a group P
of cardinality pk. Given any p-subgroup H is G, there exists a g ∈ G such that H ⊆ gPg−1. If Np is the
number of p-Sylow subgroups of G, then Np = 1 + kp for some integer k.

Remark 2.5. Given any two p-Sylow subgroups P1 and P2, using the above theorem there exists a g ∈ G
such that gP1g

−1 = P2.

Before, we prove this result, let us look at the example of GLk(Fp). Let Nk(Fp) be the group of upper
triangular matrices with all its diagonal entries equal to 1. Note that Nk(Fp) is a p-Sylow subgroup of
GLk(Fp).

Lemma 2.6. Assume that H is a subgroup of G and suppose P is a p-Sylow subgroup of G. There exists a
g ∈ G such that H ∩ gPg−1 is a p-Sylow subgroup of H.

Proof. Consider the (right) action of H on the (left) cosets X = G/P . Thus, we get that

|X| = |XH |+
∑
|Oi|>1

|Oi|

If hgP = gP , then h ∈ gPg−1. Thus, the H-stabilizer of gP is equal to H ∩ gPg−1. Now, we have

|Oi| = |H|/|H ∩ gPg−1|.
Note that p does not devide |X|. If p does not devide |H|/|H∩gPg−1|, then H∩gPg−1 is a p-Sylow subgroup
of H. Otherwise p divides each of |H|/|H ∩ gPg−1| and thus |XH | 6= 0. If gP ∈ XH , then hgP = gP , for all
h ∈ H, and hence H ⊆ gPg−1, and hence H is a p-group. �

Proof of theorem 2.4. Every finite group embeds into GLk(Fp), for some k and for any p. Thus, every finite
group G has a p-Sylow subgroup, say P . If Q is any p-subgroup of G, then we set H = Q in the above
lemma. Hence, any two p-Sylow subgroups are conjugate in G. Let Sp be the set of p-Sylow subgroups of G.
The group G acts on Sp by setting ρg(P ) = gPg−1. The group G acts transitively on the set Sp. Hence, we
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get that Np = |G|/|NG(P ), where NG(P ) = {g ∈ G : gPg−1 = P}. Let K be the group NG(P ), and let the
group P act on X = G/NG(P ). By orbit stabilizer theorem, we get that

|X| ≡ |XP | (mod p).

Note that gNG(P ) ∈ XP if and only if gPg−1 ∈ NG(P ). Now P is normal in NG(P ), thus from the previous
statement we get that gPg−1 = P . Hence g ∈ NG(P ). Thus, |XP | = 1. �

There are several other ways to prove Sylow’s theorems. However, this proof indicates very interesting use
of general linear groups. This method is similar to that of Suzuki’s book on group theory.

2.7. Exercises. [All copied from some or the other sources]

2.7.1. Give an example of an infinite group G such that any proper subgroup of G is a finite group. What
about uncountable groups G?

2.7.2. Give an example of an infinite group G such that x5 = e, for all x ∈ G.

2.7.3. Let Z[1/p] be the group (under usual addition) of rational numbers of the form x/pn, for some x ∈ Z
and n ≥ 0. Given two primes p 6= l, prove or disprove that Z[1/p] is isomorphic to Z[1/l].

2.7.4. Show that the group R/Z is isomorphic to S1, the unit circle. Are the groups R/Q and R/Z isomor-
phic?

2.7.5. What are the automorphism group of Z/NZ? Let G be a group such that for any d||G|, there exists
a unique subgroup of order d. Then show that G is cyclic.

2.7.6. Let G be a group and let H be a subgroup of index 2 in G. Show that H is normal in G.

2.7.7. Let G be a group and let Z(G) be the centre of G. If G/Z(G) is cyclic then prove that G is abelian.

2.7.8. What are the subgroups of S3 and S4? Which of these groups are normal? What is the centre of Sn?
Describe the cardinality of conjugacy classes in Sn. What is the cardinality of the set of p-Sylow subgroups
of S6.

2.7.9. Let P be a p-sylow subgroup of a finite group G. Show that NG(NG(P )) = NG(P ) (we have already
used this fact). If N is a normal subgroup of G and if Q is a p-Sylow subgroup of N then show that
G = NNG(Q).

2.7.10. A group G is said to be simple, if the only normal subgroups of G are {e} and G. For any group
G we denote by PG the group G/Z(G). Show that PSL2(Fp), for p > 5 is a simple group. What happens if
p ∈ {2, 3}.

2.7.11. What are the number of p-sylow subgroups of PSLn(Fp)? Let G be a finite simple group with p+ 1
number of p-Sylow subgroups. Show that p2 does not devide |G|. Show that |G| divides p(p2 − 1). Should
G be isomorphic to PSL2(Fp)? (The later part follows from a result of Frobenius on trasitive permutation
actions on p + 1 symbols, however, I am not completely sure of this: Let P be a p-Sylow subgroup of G.
Since P is not a normal subgroup of G, we get that G = PgP

∐
P .)

2.7.12. From Bourbaki Algebra I. Let G and G′ be two groups, and let f : G → G′ be a map such that for
any a, b ∈ G we have either f(ab) = f(a)f(b) or f(ab) = f(b)f(a). In this series of exercies, we will show
that f(ab) = f(a)f(b) for all a, b ∈ G or f(ab) = f(b)f(a), for all a, b ∈ G. Show the following:

1. Show that the set f−1(e) is a normal subgroup of G. Show that it is enough to prove the above statement
for injective maps f .
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2. If ab = ba shcow that f(a)f(b) = f(b)f(a) (Consider f(a2b) and f(a2b2)).

3. Show that if f(ab) = f(a)f(b), then f(ba) = f(b)f(a).

4. Show that f(aba) = f(a)f(b)f(a).

5. Let A be the set {a ∈ G : f(ab) = f(a)f(b),∀b ∈ G} and let B be the set {a ∈ G : f(ab) = f(b)f(a) : ∀b ∈
G}. Show that A 6= G, B 6= G and G = A ∪B is impossible.

6. If A ∪B = G, then there exists a, b, c ∈ G such that

f(ab) = f(a)f(b) 6= f(b)f(a), f(ac) = f(c)f(a) 6= f(a)f(c).

Show that
f(c)f(a)f(b) = f(b)f(a)f(c).

7. Considering f(abac) show that A ∪B = G.

2.7.13. From Bourbaki Algebra I. If G be a finite group of order n, the number of automorphisms of G is
bounded by nlog2n.

2.7.14. From Bourbaki Algebra I. Recall that a homomorphism f : G → G is called an endomorphism
of the group G. If an endomorphism is an isomorphism, then f is called an automorphism. The set of
automorphisms of the group G is denoted by Aut(G). The automorphism of the form adh : G 7→ G, given
by the map g 7→ hgh−1 are called an inner automorphism. The set of inner automorphisms Inn(G) forms a
subgroup of Aut(G).

1. If an automorphism σ commutes with all elements of Inn(G), then show that xσ−1(x) ∈ Z(G). From now,

assume that G is a non-abelian simple group.

2. Let s ∈ Aut(Aut(G)). Show that s(inn(G)) = G.

3. Let s ∈ Aut(Aut(G)) and let s(adg) = adg, for all g ∈ G. Show that s = e.

4. Show that Aut(Aut(G)) = Inn(Aut(G)).

2.7.15. From Bourbaki Algebra I.

1. Let G be a group and let H be a subgroup such that |G/H| = n. Let N =
⋂
g∈G gHg

−1. Show that

|G/N ||n!.

2. With the same notations in part (1), a subgroup H is called residually finite if N is trivial group {e}.
If G is a residually finite group if and only if G is a subgroup of a product of finite groups.

3. If G is finnitely generated, i.e., G = 〈S〉 for some finite subset S of G, then show that the set Pm consisting
of subgroups of G of index m is a finite set.

4. Let G be a finitely generated subgroup, and let f : G→ G be a surjective endomorphism. For any m, show
that the map H 7→ f−1(H) is a bijection of Pm onto Pm. Show that ker(f) is contained in every subgroup
H of G with finite index. Deduce that if G is residually finite then f is a bijection.

2.7.16. From Bourbaki Algebra I. Let H be a subgroup of G of finite index. Assume that G is the union of
conjugates of H. Show that H is equal to G. Give a counter example of the case where |G/H| is not finite.
(Hint: Use the previous exercise to reduce this to the finite group case, and then use a counting argument)

2.7.17.

1. Let p be a prime number and let x, y ∈ G. Assume that yxy−1 = xn for some integer n and xp = e. Show
that ypxy−p = xn and deduce that yp−1 commutes with x.

2. Let G be a group for all of whose elements not e are of order p and conjugate to one another. Show that
|G| ≤ 2.
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2.7.18. From Bourbaki Algebra I. Let A and B be two subgroups of a finite group G, let NA and NB be their
normalizers respectively. Let νA and νB be the indicies of NA and NB respectively. Let rA be the number
of conjugates of A which contain B and rB be the number of conjugates of B which contain A. Show that
νArB = νBrA.

2.7.19. From Bourbaki Algebra I. Let G be a group of permutations of a finite set E. For s ∈ G, we set χ(s)
the number of fixed points of s, i.e., χ(s) = |{x ∈ E : s(x) = x}|.

1. Show that
∑
s∈G χ(s) = |G|t, where t is the number of orbits of G in E. (This is a very useful technique

in many counting arguments, called the Burnside’s lemma in literature)

2. Let x ∈ E, and Gx = {g ∈ G : gx = x}. If Gx 6= {e} for all x ∈ E, and if χ(s) = k, for all s ∈ G, then
show that k ≤ t ≤ 2k.

3. Suppose that G operates transitively on E and let x ∈ E be fixed. Show that
∑
s∈G χ(s)2 = |G|tx, where

tx is the number of orbits of H in E.

3. Symmetric and alternating groups

3.1. In this section, we study symmetric groups, especially their conjugacy classes, etc. Later part of this
section, we will study the normal subgroups of Sn and the group Aut(Sn) (the set of group group isomorphisms
of Sn). Let σ be an element of Sn. Let 〈σ〉 act on [n] by permuting its elements. Let [n] =

∐r
i=1Xi, where

Xi is an orbit for the action of 〈σ〉. We may write

Xi = {ni1, ni2, . . . , nik}.
where nij = σ(ni(j+1)), for all j ≤ k− 1 and σ(nik) = ni1. We denote by (a1a2 . . . ak) the permutation which
takes

a1 7→ a2, a2 7→ a3, . . . , ak−1 7→ ak; ak 7→ a1,

and the rest of elements of the set [n] are fixed by it. Note that

σ =

r∏
i=1

(ni1, . . . , niki).

If we set σi =
∏r
i=1(ni1, . . . , niki), then σi and σj commute with each other. The above decomposition is

called the cycle decompostion of σ. The partition k1 + k2 + · · ·+ kr = n is called the cycle type of σ.

3.2. Let τ be any permutaiton and σ be a permutation and we continue to use the notations from the
previous paragraph. The permutation τστ−1 has the same cycle type as σ. Moreover, if σ and σ′ has the
same cycle type then there exists a τ such that τστ−1 = σ′. This follows from the following commutative
diagram

[n] [n]

[n] [n]
σ

τ

τστ−1

τ

The permutation τ just plays the role of changing labels on the symbols {1, 2, . . . , n}. Hence, conjugacy
classes in Sn correspond to the partitions of n. Let λ be a partition of n which essentially means that a sum
of the form

k1 + 2k2 · · ·+ rkr = n.

Let Oλ be the set of all permutations of the type n. Clearly Oλ is a conjugacy class of Sn. Assume λ is the
partition

∑r
i=1 iki = n, then |Oλ| is equal to

1

k1k2 . . . kn

n!

k1!k2! . . . k!
.
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3.3. In this section, we will explicitly write down subgroups of S3 and S4 and their normal subgroups. The
group S3 consists of the following elements

{(1), (12), (23), (13), (123), (132)}.

The only subgroups of S3 are cyclic, and hence it is easy to see that {(1), (12)}, {(1), (13)}, {(1), (23)} and
{(1), (123), (132)} are the only subgroups of S3.

Now, consider the case of S4. The partitions of 4 are λ1 : 1 + 1 + 1 + 1, λ2 : 1 + 1 + 2, λ3 : 1 + 3, λ4 : 2 + 2
and λ5 : 4. Hence S4 consists of 5 distinct conjugacy classes. The groups A4 is a normal subgroup of S4 and
hence is the union of conjugacy classes in S4. Hence A4 consists of the conjugacy classes correspond to λ1,
λ3 and λ4. Hence A4 is given by

{(1), (123), (132), (234), (324), (124), (214), (134), (341), (12)(34), (23)(14), (13)(24)}.

Note that K = {(1), (12)(34), (23)(14), (13)(24)} is a subgroup of A4 and is a normal subgroup of A4. Hence,
the group A4 can be written as K.L, where L is any subgroup of order 3. Infact A4 is the semi-direct product
of K and L.

3.4. In this subsection, we want to prove that Sn is generated by atmost n-elements of order 2. We will
give a “presentation” of the group Sn. Later we will do the same for the alternating group An.

Lemma 3.1. The group Sn is generated by traspositions, i.e., elements of the form (ij). Moreover, the group
Sn is generated by transpositions

S = {(i, i+ 1) : 1 ≤ i ≤ n− 1}.

The group Sn is generated by the set of elements {(1i) : 2 ≤ i ≤ n}, or by the set of elements of the form
{(12), (123 . . . n)}.

Proof. We already observed that Sn is generated by cycles (a1, a2, . . . , ak). Note that

(a1, a2, . . . , ak) = (a1, a2)(a2, a3) . . . (ak−1, ak).

Hence it is enough to show that (ij) is generated by the set S. We may assume that i < j. We may obtain
(i + 1, j) by conjugate (ij) to (i + 1, j) by conjugating with τ1 = (i, i + 1), and then obtain (i + 2, j) by
conjugating with (i + 1, i + 2) and so on. Hence (ij) is contianed in the group generated by S. The other
parts are left as exercises. �

Lemma 3.2. The group An is generated by cycles of order 3. Moreover, An is generated by the set

T = {(123), (124), . . . (12n)}.

The group A2n+1 is generated by (123) and (12 . . . n) and A2n is generated by (123) and (234 . . . n).

Proof. The group An must be generated by elements of the form (ij)(kl), for some i, j, k, l ∈ [n]. If {i, j} ∩
{k, l} 6= ∅, then assume that j = k, and (ij)(kl) = (ijl). Assume that {i, j} ∩ {k, l} = ∅. We may write

(ij)(kl) = (ij)(jk)(jk)(kl) = (ijk)(jkl).

Since the group Sn is generated by {(1i) : 2 ≤ i ≤ n}, we can consider any element of the form (1i)(1j) ∈ An.
Now we have

(1i)(1j) = (1i)(12)(12)(1j) = (i12)(21j).

The above identity proves the second part of the accretion. The later part is left as exercise. �

Theorem 3.3 (Suggested as an exercise in Bourbaki Algebra I). Let n > 5. Then An is a simple group.

Proof. �
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4. Applications to groups of small cardinality

4.1. Let G be a finite abelian group. Note that all p-sylow subgroups of G are normal and hence we get
that

G = P1 × P2 × · · · × Pi.
where Pi is a pi-abelian subgroup of G. Note that we have not used the existence of p-Sylow subgroups of
abelian groups in the proof of Sylow’s theorems and hence there is no circular arguments here. Now, we need
to understand finite abelian p-groups. For any abelian group G and a subgroup H of G, we set

H := {g ∈ G : gp
m

∈ H}.

4.2. Groups of order p are isomorphic to the cyclic group Z/pZ. Let us consider the groups of order p2. We
proved using the class equation that Z(G) is non-trivial for any p-group G. Thus, we get that G/Z(G) is
cyclic and hence Z(G) is abelian p-group.

5. Solvable and Nilpotent subgroups

6. Group representations
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