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Abstract. Emerton’s theory of Jacquet modules for locally analytic representations provides

necessary conditions for the existence of integral structures in locally analytic representations.

These conditions are also expected to be sufficient for the integrality of generic irreducible
locally algebraic representations. In this article, we prove the sufficiency of Emerton’s con-

ditions for some tamely ramified locally algebraic representations of GL2(D) where D is a

p-adic division algebra.

1. Introduction

Let p be a prime number, F be a finite extension of Qp with residue field Fq and uniformizer
ϖF , and let E be a large enough finite extension of F . Let G be the group of rational points
of a connected reductive group over F and π = πsm ⊗ πalg be an irreducible locally algebraic
representation of G over E. The question of the existence of a G-invariant lattice or a G-integral
structure in π is of fundamental interest to the p-adic Langlands program.

Emerton gives necessary conditions for the existence of integral structures in terms of the
exponents of Jacquet modules of locally algebraic representations. Let P = MPNP ⊆ G be
a parabolic subgroup with the modulus character δP and let JP denote the Emerton’s locally
analytic Jacquet module functor. If π admits a G-integral structure, then for every parabolic P
of G and χ such that HomZ(MP )(χ, JP (π)) ̸= 0,

(δ−1
P χ)(z) is integral in E, (1.1)

for all z ∈ Z(MP )
+ where Z(MP )

+ is the contracting monoid in the center Z(MP ) of the
Levi factor MP [Eme06, Lemma 4.4.2]. The characters χ of Z(MP ) occurring in JP (π) are
called exponents. It is expected that the condition (1.1) is also sufficient for the existence
of an integral structure in π when πsm is generic. For G = GLn(F ), this is equivalent to
Breuil-Schneider conjecture (see Hu [Hu09]). Note that for P = G, the condition (1.1) reads
as the central character of π is integral. When π has integral central character and πsm is
essentially square-integrable, the Jacquet modules JP (π) for proper parabolic P always satisfy
(1.1). In this situation, Sorensen showed using global methods that the integrality of the central
character is sufficient for π to have an integral structure [Sor13]. On the other hand, when πsm
is a principal series representation, the Jacquet modules are no longer simple and one requires
further conditions on π whose sufficiency is not easy to prove. There are only partial results
available, even for GL2(F ), when πsm is an unramified principal series and the weights of πalg
are small [DI13, Ass21] or when π = πsm is a tamely ramified principal series [Vig08]. For
general split reductive groups and F = Qp, Große-Klönne has constructed integral structures in
unramified smooth principal series representations under some technical hypothesis [GeK14].

In this article, we consider the non-quasi-split group G = GL2(D) where D is a central F -
division algebra of dimension d2 and show that (1.1) is sufficient for the existence of integral
structures in some tamely ramified irreducible locally algebraic representations of G. Let us spell
out (1.1) for representations of G = GL2(D) admitting integral structures. Let B = TN be the

minimal parabolic subgroup of G consisting of upper triangular matrices. One has δB(z) = q−d
2

for z =
(
ϖF 0
0 1

)
∈ Z(T )+. Denote by π(λ) the irreducible algebraic representation of GL2d(F )

with highest weight λ = (λ1, . . . , λ2d) and by χ(λ) the character (t1, . . . , t2d) 7→ tλ1
1 . . . tλ2d

2d of its
diagonal torus.
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If π = IndGB(τ1 ⊗ τ2)⊗ π(λ) is a locally algebraic principal series representation, then

JB(π) ∼= (IndGB(τ1 ⊗ τ2))N ⊗ π(λ)N

and

(IndGB(τ1 ⊗ τ2))
ss
N

∼= (τ1 ⊗ τ2)⊕ ((τ2 ⊗ τ1)⊗ δB).

Denoting the central characters of representations ? by ω?, the exponents χ of JB(π) are

(ωτ1 ⊗ ωτ2)χ(λ) and (ωτ2 ⊗ ωτ1)δBχ(λ).

Thus, if π has an integral structure, (1.1) says that

(ωτ1ωτ2)(ϖF )ϖ
∑2d

i=1 λi

F is an integral unit (the integrality of ωπ), and

qd
2

ωτ1(ϖF )ϖ
∑d

i=1 λi

F and ωτ2(ϖF )ϖ
∑d

i=1 λi

F are integral in E. (1.2)

Our first main result shows that the conditions (1.2) are sufficient for the existence of an integral

structure in π if the smooth principal series IndGB(τ1 ⊗ τ2) is tamely ramified and π(λ) is trivial,
i.e., λ = 0:

Theorem A (Theorem 3.1). The integrality conditions (1.2) of Emerton are sufficient for the
existence of an integral structure in a smooth tamely ramified principal series representation
IndGB(τ1 ⊗ τ2) of G.

We remark that the principal series IndGB(τ1⊗τ2) is not required to be irreducible in Theorem
A. However, the conditions (1.2) are no longer sufficient for a reducible principal series tensored
with a non-trivial algebraic representation (see erratum of [Vig08]).

A principal series of the form IndGB((τ ⊗ τ) ⊗ δ
d−a
2d

B ) is reducible with unique irreducible
quotient St(τ) and unique irreducible submodule Sp(τ). Here a is the length of the segment that
determines the Jacquet-Langlands lift of the irreducible D×-representation τ . If π = St(τ)⊗π(λ)
(resp. Sp(τ)⊗ π(λ)), then

JB(π) ∼= ((τ ⊗ τ)⊗ δ
d+a
2d

B )⊗ π(λ)N (resp. ((τ ⊗ τ)⊗ δ
d−a
2d

B )⊗ π(λ)N ).

The exponent χ in JB(π) is (ωτ ⊗ ωτ )δ
d+a
2d

B χ(λ) (resp. (ωτ ⊗ ωτ )δ
d−a
2d

B χ(λ)). Hence, if π has an
integral structure, then (1.1)) says that

ω2
τ (ϖF )ϖ

∑2d
i=1 λi

F is an integral unit and q
d(d−a)

2 ωτ (ϖF )ϖ
∑d

i=1 λi

F

(resp. q
d(d+a)

2 ωτ (ϖF )ϖ
∑d

i=1 λi

F ) is integral in E. (1.3)

The first part of (1.3), i.e., the integrality of ωπ implies that valE(ωτ (ϖF )) =
−1
2

∑2d
i=1 λi. Thus

valE(ωτ (ϖF )) +
∑d
i=1 λi =

1
2 (
∑d
i=1 λi −

∑2d
i=d+1 λi) ≥ 0. As d− a ≥ 0, we see that the second

part of (1.3) is redundant as it is implied by the first part. Hence, in this case, the integrality
of ωπ is conjecturally sufficient for the existence of an integral structure in π. The sufficiency
follows from Theorem 3.1 when St(τ) (resp. Sp(τ)) is tamely ramified and π(λ) is trivial (see
Theorem 3.3). Our second main result shows the sufficiency of the integrality of ωπ for a locally
algebraic representation π = St(τ)⊗π(λ) with non-trivial π(λ) under the assumption that St(τ)
is tamely ramified and τ is of dimension at most 2:

Theorem B (Theorem 4.6). Let τ be a smooth absolutely irreducible tamely ramified rep-
resentation of D× of dimension ≤ 2. Then the locally algebraic Steinberg representation
π = St(τ)⊗ π(λ) of G with integral central character admits an integral structure.

We follow local methods of Vignéras [Vig08] and Hu [Hu21] based on the theory of coefficient
systems (or diagrams) on the Bruhat-Tits tree of G. The main idea of Vignéras is to use the
realization of a locally algebraic representation π as the 0-th homology group of its fixed-point
system. The question of finding an integral structure in π then amounts to the question of
finding a system of lattices in the corresponding fixed-point system of finite-dimensional vector
spaces. The analysis gets more involved when πsm admits invariants under smaller compact
open subgroups and when πalg is non-trivial. This is the reason πsm is tamely ramified in all of
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our results. Hu’s argument allows us to treat some π with non-trivial πalg (without explicitly
working with πalg) under a strong assumption on dimE(τ) which is necessary.

We conclude with an example of an infinite-dimensional integral locally algebraic Speh rep-
resentation Sp(τ)⊗π(λ); see §4.1. It is easy to see that the tensor product of a one-dimensional
Speh representation (i.e., a character) and a non-trivial irreducible algebraic representation is
never integral. However, this is false for infinite-dimensional irreducible locally algebraic Speh
representations. We believe that this is related to the fact that Sp(τ) admits a generalized
Whittaker model if and only if it is infinite-dimensional (see Remark 4.8). Our investigations
suggest that, for the group GL2(D), Emerton’s integrality conditions (1.1) are sufficient for the
integrality of any infinite-dimensional irreducible locally algebraic representation.

Organization: In §2, we discuss Vignéras’ integrality criterion for the representations of GL2(D).
In §3, we use this criterion to show that Emerton’s integrality conditions are sufficient for the
integrality of smooth tamely ramified principal series representations. The §4 talks about the
integrality of locally algebraic representations of GL2(D) whose smooth part is either a Steinberg
representation or a Speh representation. We show the sufficiency of Emerton’s conditions for
some locally algebraic Steinberg representations. Finally, in the subsection §4.1, we illustrate
the connection between the integrality of locally algebraic representations and the genericity
of their smooth part with an example of an infinite-dimensional integral locally algebraic Speh
representation.

Notation and convention:
Let F be a non-archimedean local field of characteristic 0 with residue field Fq of characteristic

p. Let D be the central F -division algebra of index d. Let OF ⊆ F and OD ⊆ D denote the
respective valuation rings. Fix uniformizers ϖF ∈ OF and ϖD ∈ OD. For a divisor d′ of d, let
Fd′ denote the unramified extension of F of degree d′ viewed as a subfield of D. Let | · |F and
| · | denote the normalized non-archimedean absolute values on F and D respectively such that
|ϖF |F = q−1 and |ϖD| = q−d. We have | · | := | · |dF ◦ Nrd where Nrd : D → F is the reduced

norm. Note that |ϖF | = q−d
2

.
Let G be the group GL2(D) of units in the matrix algebra M2(D), K = GL2(OD) and I ⊆ K

denote the standard Iwahori subgroup. We view D× as a subgroup of G embedded diagonally
in it. Let K0,K1 ⊆ G be the subgroups stabilizing respectively the standard vertex and the
standard edge of the Bruhat-Tits tree of G. Note that K0 = KϖZ

D, and K1 is generated by I
and the matrix t =

(
0 1
ϖD 0

)
. The groups K and I admit filtrations by pro-p-subgroups K(n) and

I(n) respectively for n ≥ 1 where K(n) =
(

1+ϖn
DOD ϖn

DOD

ϖn
DOD 1+ϖn

DOD

)
and I(n) =

(
1+ϖn

DOD ϖn−1
D OD

ϖn
DOD 1+ϖn

DOD

)
.

The subgroup I(1) ⊆ I is the standard pro-p-Iwahori subgroup. The groups K0 and K1 are the
normalizers of K(n) and I(n) in G respectively for all n ≥ 1. Let B ⊆ G be the subgroup of
upper triangular matrices (the standard minimal parabolic subgroup), N ⊆ B be the subgroup
of upper triangular unipotent matrices (the unipotent radical), and T ⊆ B be the subgroup of
diagonal matrices (the Levi quotient). The modulus character δB of T is | · | ⊗ | · |−1. We let Z
denote the center of G which is isomorphic to F×.

We fix a large enough finite extension E of F . The field E depends on the representation at
hand and we will explain how large it should be at various places in the article when required.
Its valuation ring is denoted by O and the residue field is denoted by k = O/ϖO where ϖ ∈ O
is a uniformizer. The rings R = E,O, k will serve as the coefficient rings for representations of
G. The representations will be either denoted by (π, V ) or just by π or V depending on the
situation. Let H ⊆ G is a subgroup. We write RH for the group algebra of H over R and
use the phrases “RH-modules” and “representations of H over R” interchangeably. If V is an
RH-module, then, for a subset S ⊆ V , we denote by H · S the RH-submodule of V generated
by S.

We fix an isomorphism between C and the algebraic closure E of E. For a smooth representa-
tion π over E, we write πC = π⊗E C for its scalar extension via the embedding E ↪→ C induced
by the fixed isomorphism. We also call π an E-model of πC. By [CEG+16, Section 3.13], all the
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results about πC are valid for π (over a large enough E). If a representation π admits a central
character, it is denoted by ωπ.

A smooth representation of G (resp. of D×) will be called tamely ramified if it has a non-zero
vector fixed by the subgroup K(1) (resp. by D(1) = 1 + ϖDOD). For a divisor d′ of d, let
Dd′ be the centralizer of Fd′ in D which is a central Fd′ -division algebra of index d/d′. Let
θ : F×

d′ → E× be a character which is trivial on the subgroup of integral units congruent to 1
modulo the maximal ideal and whose all Galois conjugates are distinct. Here one requires E to
contain all d roots of unity. Composing it with the reduced norm Nrd : D×

d′ → F×
d′ and extending

it to D(1)D×
d′ by declaring it to be trivial on D(1), we get a character θ : D(1)D×

d′ → E×. The

representation IndD
×

D(1)D×
d′
θ is absolutely irreducible and tamely ramified. In fact, all smooth

tamely ramified absolutely irreducible representations of D× over E are obtained in this fashion
[SZ05].

2. Coefficient systems and Vignéras’ integrality criterion

We begin by recalling some definitions. Let H ⊆ G be an open subgroup. A locally algebraic
representation of H over E is a representation of the form π = πsm ⊗ πalg, where πsm is a
smooth representation of H over E and πalg is the restriction to H of a finite-dimensional
rational representation of G over E. If πsm has a name “X”, then π will be called by the
name “locally algebraic X”. The representation π is irreducible if and only if πsm and πalg
are irreducible [STP01, Appendix, Theorem 1]. An H-integral structure is an H-stable free
O-submodule π◦ ⊆ π which spans π over E. The integral structure is also called an H-lattice
since it is a lattice stable under the action of H. If an H-integral structure exists, we say that
π is H-integral, or just integral if the group is clear from the context. We are interested in the
integrality of irreducible locally algebraic representations of G.

A diagram

D1
r−→ D0

is a data consisting of continuous (smooth when R = k) RKi-modules Di and a map r equivariant
for the action of K0∩K1 = IϖZ

D. Such a diagram gives rise to a G-equivariant coefficient system
on the Bruhat-Tits tree of G. Conversely, the restriction of a G-equivariant coefficient system
to the subtree consisting of the standard edge and the standard vertex is a diagram. Associated
to a diagram D (or to a coefficient system), one has oriented chain homology groups Hi(D),
i = 0, 1, which are continuous RG-modules, see [Vig08, page 3].

Let π = πsm ⊗ πalg be a locally algebraic representation of G over E. Assume that πsm is

generated by its subspace π
I(n)
sm of I(n)-invariants for some positive integer n and dimE(π

I(n)
sm ) <

∞. Let V1 = π
I(n)
sm ⊗ πalg and V0 = π

K(n)
sm ⊗ πalg and consider the diagram

D(π) = V1 ↪→ V0

of EKi-modules Vi. It follows from [SS97, Theorem II.3.1] and [Vig08, Proposition 0.4] (with
the same exact proof for GL2(D)) that the representation H0(D(π)) of G is isomorphic to π.

Theorem 2.1 (Vignéras). π is integral if and only if V0 contains a K0-lattice M0 such that
M1 = M0 ∩ V1 is a K1-lattice of V1, i.e. M1 is stable under the action of t. In this situation,
H0(M1 ↪→M0) is a G-integral structure of π.

Proof. See [Vig08, Corollary 0.2 and Proposition 0.4]. □

Suppose V1 contains a K1-lattice L1. Starting from L1, define inductively an increasing
sequence of K1-lattices of V1 as follows:

L
(0)
1 := L1,

L
(i+1)
1 :=

2d−1∑
i=0

ti
((

K0 · L(i)
1

)
∩ V1

)
for i ≥ 0.

Corollary 2.2. π is integral if and only if V1 contains a K1-lattice L1 such that the increasing

sequence (L
(i)
1 )i of K1-lattices of V1 becomes stationary.
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Proof. If π is integral, then the K1-lattice M1 as in Theorem 2.1 satisfies M
(0)
1 = M

(1)
1 . Con-

versely, if V1 contains a K1-lattice L1 such that L
(i0)
1 = L

(i0+1)
1 for some positive integer i0, then

M0 = K0 · L(i0)
1 is a K0-lattice of V0 such that M1 =M0 ∩ V1 = L

(i0)
1 . □

Remark 2.3. If π is integral, then for any K1-lattice L1 of V1, the sequence (L
(i)
1 )i of K1-

lattices becomes stationary. Indeed, we know that there is a K1-lattice M1 of V1 such that the

the sequence (M
(i)
1 )i becomes stationary. We may assume L1 ⊆M1. Since [M1 : L1] is finite, it

is clear that the increasing sequence (L
(i)
1 )i also becomes stationary.

The integrality criterion in Corollary 2.2 will be used in the following sections to show that
Emerton’s conditions are sufficient for the existence of integral structures in π for which πsm is
tamely ramified.

3. Integrality of smooth principal series

Let (τ1,W1) and (τ2,W2) be two smooth absolutely irreducible tamely ramified representations

of D× over E. In this section, π = πsm = IndGB(τ1 ⊗ τ2). Note that πI(1) ̸= 0. In fact, π is
generated by πI(1) as a G-representation. In order to describe the spaces V0 = πK(1) and
V1 = πI(1), we define some explicit elements of the principal series π.

Let s = ( 0 1
1 0 ) and uλ =

(
1 [λ]
0 1

)
where [λ] ∈ OD is the Teichmüller lift of λ ∈ Fqd . For h ∈ G

and v ∈W1 ⊗W2, we denote by fhv the unique function in πI(1) supported on BhI(1) such that
fhv (h) = v. Similarly, we denote by ghv the unique function in πK(1) supported on BhK(1) such
that ghv (h) = v. Note that f1v = g1v because BI(1) = BK(1), and fsv =

∑
λ∈F

qd
gsuλ
v because

BsI(1) =
⊔
λ∈F

qd
BsuλK(1). If M ⊆W1 ⊗W2 is an O-submodule, it is convenient to write fhM

for the set {fhv : v ∈M} and similarly ghM for the set {ghv : v ∈M}. As

G = BI(1) ⊔BsI(1) = BK(1) ⊔
⊔

λ∈F
qd

BsuλK(1),

we have
V1 = f1W1⊗W2

⊕ fsW1⊗W2
and V0 = g1W1⊗W2

⊕
⊕
λ∈F

qd

gsuλ

W1⊗W2
.

It is easy to check tf1v = fs(τ1(ϖD)⊗Id)(v) and tf
s
v = f1(Id⊗τ2(ϖD))(v). By letting K(1) act trivially

on W1 ⊗W2, one can extend the action of B ∩ K0 on W1 ⊗W2 to IϖZ
D = (B ∩ K0)K(1). Then,

as EK0-modules, V0 ∼= IndK0

IϖZ
D

(τ1 ⊗ τ2).

Let T0 = T ∩ K0. The central character ωπ of π equals ωτ1ωτ2 . When ωπ is integral, there
exists a T0-lattice L ⊆W1 ⊗W2. The main result of this section is the following:

Theorem 3.1. The tamely ramified principal series representation π = IndGB(τ1 ⊗ τ2) with

integral central character is integral if and only if qd
2

ωτ1(ϖF ) ∈ O and ωτ2(ϖF ) ∈ O.

Proof. ( =⇒ ) Though the necessity is known due to Emerton, we provide a proof to set up the
notation for the next part. Let

L0 := IndK0

IϖZ
D

L = g1L ⊕
⊕
λ∈F

qd

gsuλ

L

be a K0-lattice of V0. Then,

L0 ∩ V1 = L
I(1)
0 = f1L ⊕ fsL.

Let
L1 = L

(0)
1 := L0 ∩ V1 + t(L0 ∩ V1).

As L is stable under the diagonal action of ϖD, L1 is stable under the action of K1 and so it is
a K1-lattice of V1. One computes that

L1 = f1L+(Id⊗τ2(ϖD))L ⊕ fsL+(τ1(ϖD)⊗Id)L.

Thus,
K0 · L1 = K0 · f1L+(Id⊗τ2(ϖD))L + K0 · fsL+(τ1(ϖD)⊗Id)L. (3.1)
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Since u−λs · f1v = u−λs · g1v = gsuλ
v , the first summand K0 · f1L+(Id⊗τ2(ϖD))L in (3.1)) is

g1L+(Id⊗τ2(ϖD))L ⊕
⊕
λ∈F

qd

gsuλ

L+(Id⊗τ2(ϖD))L.

To describe the second summand K0 · fsL+(τ1(ϖD)⊗Id)L, let

F xv := uxs · fsv for x ∈ Fqd and v ∈ L+ (τ1(ϖD)⊗ Id)L.

The lattice fsL+(τ1(ϖD)⊗Id)L is stable under the action of IϖZ
D. The set {1, uxs : x ∈ Fqd} forms

a set of representatives of K0/Iϖ
Z
D. Thus

K0 · fsL+(τ1(ϖD)⊗Id)L = fsL+(τ1(ϖD)⊗Id)L + ⟨
∑′

x,v

F xv ⟩, (3.2)

where
∑′
x,v denotes a sum over finitely many pairs (x, v) with x ∈ Fqd and v ∈ L+(τ1(ϖD)⊗Id)L

and ⟨
∑′

x,v
F xv ⟩ is the O-module of all such sums. Using sucs =

(
−1/[c] 1

0 [c]

)
su1/c for c ̸= 0, we

get

F xv = uxs ·
∑
λ∈F

qd

gsuλ
v = g1v + ωτ1(−1)

∑
λ∈F×

qd

g
su(1/λ)−x

ξλ(v)

where ξλ = τ1(λ)⊗ τ2(1/λ). For a fixed but arbitrary v ∈ L+ (τ1(ϖD)⊗ Id)L, consider∑
x∈F

qd

F xv = qdg1v + ωτ1(−1)
∑
x∈F

qd

∑
λ∈F×

qd

g
su(1/λ)−x

ξλ(v)

= f1qdv + ωτ1(−1)
∑
λ∈F×

qd

∑
x∈F

qd

g
su(1/λ)−x

ξλ(v)

= f1qdv + ωτ1(−1)
∑
λ∈F×

qd

fsξλ(v).

Since ξλ(v) ∈ L+(τ1(ϖD)⊗ Id)L, it follows that f1qdv ∈ K0 ·fsL+(τ1(ϖD)⊗Id)L. Therefore, we have

f1(Id⊗τ2(ϖD))L ⊆ (K0 · L1)
I(1) ⊆ L

(1)
1 and f1qd(τ1(ϖD)⊗Id)L ⊆ (K0 · L1)

I(1) ⊆ L
(1)
1 .

Then by the same arguments as above,

f1(Id⊗τ2(ϖD))iL ⊆ L
(i)
1 and f1(qd(τ1(ϖD)⊗Id))iL ⊆ L

(i)
1 .

By Remark 2.3, the existence of an integral structure in π implies that the sequence of K1-

lattices L
(i)
1 stabilizes. This implies that the linear maps Id ⊗ τ2(ϖD) and qd(τ1(ϖD) ⊗ Id)

stabilize some lattices in W1 ⊗W2. Taking the d-th power of these maps, we get ωτ2(ϖF ) ∈ O
and qd

2

ωτ1(ϖF ) ∈ O.
( ⇐= ) The assumptions on π that its central character is integral and

ωτ2(ϖF ), q
d2ωτ1(ϖF ) ∈ O

imply that there exists a T0-lattice L ⊆W1 ⊗W2 such that

(Id⊗ τ2(ϖD))L ⊆ L and qd(τ1(ϖD)⊗ Id)L ⊆ L. (3.3)

Using L, we define the lattices L0 and L1 as before. Because of (3.3),

L1 = f1L ⊕ fsL+(τ1(ϖD)⊗Id)L.

We will prove that L
(1)
1 = L

(0)
1 = L1 which implies the integrality of π by Corollary 2.2. This is

equivalent to proving that

(K0 · L1) ∩ V1 = (K0 · L1)
I(1) = L1.

By (3.1) and (3.2), it is enough to show that if

l +
∑′

x,v

F xv ∈ (K0 · L1)
I(1) with l ∈ L0,
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then l+
∑′
x,v F

x
v ∈ L1. Since q

d − 1 is invertible in O, we can choose an O-basis {v1, . . . , vn} of

the lattice L+(τ1(ϖD)⊗ Id)L that is an eigenbasis for the operators ξλ and such that the scalar
multiples of vi’s form an O-basis of the sub-lattice L. Let ψi(λ) be the eigenvalue for the action
of ξ1/λ on vi. Then ψi defines a character on F×

qd
. Extend ψi to a function on Fqd by defining

ψi(0) = 0.

Let l +
∑′

x,v
F xv ∈ (K0 · L1)

I(1) with l ∈ L0. We write

∑′

x,v

F xv =
∑
x∈F

qd

(
n∑
i=1

ax,iF
x
vi

)

=

n∑
i=1

∑
x∈F

qd

ax,iF
x
vi

=

n∑
i=1


 ∑
x∈F

qd

ax,i

 g1vi + ωτ1(−1)
∑
x∈F

qd

ax,i
∑
λ∈F×

qd

g
su(1/λ)−x

ξλ(vi)


=

n∑
i=1

f1(∑
x∈F

qd
ax,i

)
(vi)

+ ωτ1(−1)
∑

x,λ∈F
qd

ax,iψi(λ)g
suλ−x
vi

 .

Let us write ax,i = ai(−x) to view it as a function on Fqd , and let

S1 =

n∑
i=1

f1(∑
x∈F

qd
ai(−x)

)
(vi)

and S2 = ωτ1(−1)

n∑
i=1

∑
x,λ∈F

qd

ai(−x)ψi(λ)gsuλ−x
vi .

Thus ∑′

x,v

F xv = S1 + S2.

We may take l ∈
⊕

λ∈F
qd
gsuλ

L and thus write

l =

n∑
i=1

∑
λ∈F

qd

bi(λ)g
suλ
vi .

Recall that
V1 = f1W1⊗W2

⊕ fsW1⊗W2
and L1 = f1L ⊕ fsL+(τ1(ϖD)⊗Id)L.

Note that S1 is invariant under the action of I(1). Therefore, l + S2 is also invariant under the
action of I(1). Further, the function l+ S2 is not supported on BI(1). Hence l+ S2 ∈ fsW1⊗W2

.
Writing

l + S2 =
∑
y∈F

qd

c1g
suy
v1 + . . .+

∑
y∈F

qd

cng
suy
vn

gives that the function

y 7→ ωτ1(−1)

 ∑
x∈F

qd

ai(−x)ψi(x+ y)

+ bi(y) on Fqd

is the constant function ci for all 1 ≤ i ≤ n. Thus ci ∈ O for all i, and l + S2 = fs∑
i civi

∈
fsL+(τ1(ϖD)⊗Id)L ⊆ L1.

To show that S1 ∈ L1, we use Fourier theoretic methods as in [Vig08, §3]. We assume that our

coefficient field E is large enough so that the Fourier transform ?̂ of O-valued functions ? on Fqd
is well-defined. Following the notation in [Vig08, §3], we let ∆ denote the constant function 1 on
Fqd , δ0 denote the characteristic function of 0, and use ∗ to denote the convolution product of

two functions. In this notation, S1 = f1∑n
i=1 âi(0)vi

. We show that âi(0)vi ∈ L for each 1 ≤ i ≤ n.

Indeed, for each i, we have from the previous paragraph

ci∆ = ωτ1(−1)(ai ∗ ψi) + bi. (3.4)
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If ψi is trivial, then it follows that ci = ωτ1(−1)(âi(0)− ai(y)) + bi(y) for all y ∈ Fqd . Hence

(âi(0)− ωτ1(−1)ci)vi + ωτ1(−1)bi(y)vi = ai(y)vi for all y ∈ Fqd .

Adding over y ∈ Fqd gives

(âi(0)− ωτ1(−1)ci)q
dvi + ωτ1(−1)b̂i(0)vi = âi(0)vi.

By (3.3), (âi(0) − ωτ1(−1)ci)q
dvi ∈ L. Further, recall that

∑n
i=1 bi(y)vi ∈ L. The choice of

the basis {vi} implies that each bi(y)vi ∈ L. Thus b̂i(0)vi ∈ L. Hence âi(0)vi ∈ L. If ψi is
non-trivial, then applying the Fourier transform on both sides of (3.4) gives

ciq
dδ0 = ωτ1(−1)âiψ̂i + b̂i.

Multiplying both sides by ψ̂−1
i and using that ψ̂iψ̂

−1
i = ψi(−1)qd(∆− δ0), we get

ciq
dδ0ψ̂

−1
i = ωτ1(−1)ψi(−1)qd(∆− δ0)âi + b̂iψ̂

−1
i .

Thus

ciq
dδ0ψ̂

−1
i = ωτ1(−1)ψi(−1)qdâi − ωτ1(−1)ψi(−1)qdδ0âi + b̂iψ̂

−1
i .

Rearranging the terms, we have

qdâi = qdâi(0)δ0 + ψ̂−1
i ϕ̂ = qdâi(0)δ0 + ψ̂−1

i ∗ ϕ
where ϕ = ωτ1(−1)ψi(−1)(ci∆− bi). By the Fourier transform again, we get

qdai = âi(0)∆ + ψ−1
i ∗ ϕ.

Hence

âi(0)vi = ai(0)q
dvi − (ψ−1

i ∗ ϕ)(0)vi.
Note that

(ψ−1
i ∗ ϕ)(0)vi = ωτ1(−1)ψi(−1)

 ∑
x∈F

qd

ψ−1
i (−x)(ci − bi(x))

 vi

= ωτ1(−1)ψi(−1)

ciψ̂−1
i (0)−

∑
x∈F

qd

ψ−1
i (−x)bi(x)

 vi

= −ωτ1(−1)ψi(−1)
∑
x∈F

qd

ψ−1
i (−x)bi(x)vi ∈ L.

Also qdvi ∈ L by (3.3)). Therefore âi(0)vi ∈ L.
It follows that S1 = f1∑n

i=1 âi(0)vi
∈ f1L ⊆ L1. Therefore, l +

∑′
x,v F

x
v = l + S1 + S2 ∈ L1. □

Let E be large enough to contain (a fixed choice of)
√
q, and let

τ1 × τ2 := IndGB

(
τ1| · |

1
2 ⊗ τ2| · |−

1
2

)
be the normalized parabolic induction over E. The integrality criterion in Theorem 3.1 is
symmetric for the normalized induction:

Theorem 3.2. Let τ1 and τ2 be smooth irreducible tamely ramified representations of D×. The
representation τ1 × τ2 with integral central character admits an integral structure if and only if

ωτ1(ϖF )q
d2

2 , ωτ2(ϖF )q
d2

2 ∈ O.

As a consequence of Theorem 3.2, we obtain that when τ1× τ2 with integral central character
is reducible, its irreducible subquotients are always integral. Indeed, enlarging E if necessary,
we assume that all irreducible subquotients of τ1 × τ2 are defined over E. We recall a result of
Tadić which says that (τ1 × τ2)C, which is isomorphic to (τ1)C × (τ2)C, is reducible if and only if

(τ2)C ∼= (τ1)C| · |
± a

d

C , and in this case, it is multiplicity-free and has length 2. Here a is the length
of the segment of the essentially square-integrable representation of GLd(F ) associated to (τ1)C
under the Jacquet-Langlands correspondence. It follows that τ1 × τ2 is reducible over E if and
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only if τ2 ∼= τ1| · |±
a
d as E-linear representations (again after enlarging E if necessary). If τ1 is

tamely ramified of dimension d′, then d = ad′.
Let τ = τ1| · |

a
2d . Denoting by St(τ) and Sp(τ) the E-models of the Steinberg St(τC) and the

Speh Sp(τC) representation respectively, one has the following short exact sequence of smooth
E-linear representations

0 −→ Sp(τ) −→ τ | · |− a
2d × τ | · | a

2d −→ St(τ) −→ 0 (3.5)

(see [Rag07, Theorem 2.2]). We remark that Sp(τ) is infinite-dimensional if and only if τ has
dimension > 1 [Rag07, Remark 2.4].

Theorem 3.3. Let τ be a smooth absolutely irreducible tamely ramified representation of D×

over E. The representation St(τ) with integral central character admits an integral structure.
The representation Sp(τ) with integral central character admits an integral structure.

Proof. Let Π = τ |·|− a
2d ×τ |·| a

2d . From the sequence (3.5), we see that ωSt(τ) = ωSp(τ) = ωΠ = ω2
τ .

If ωSt(τ) is integral, then ωτ (ϖF ) ∈ O× and thus ωΠ is integral. Further, note that

ωτ (ϖF )q
d(d+a)

2 , ωτ (ϖF )q
d(d−a)

2 ∈ O.
Hence, by Theorem 3.2, Π has an integral structure and thus its quotient St(τ) also has an integral
structure [Vig96, II.4.14(a)]. One similarly shows that Sp(τ) with integral central character
ωSp(τ) has an integral structure. □

Corollary 3.4. St(τ) is integral if and only if Sp(τ) is integral. □

4. Integrality of locally algebraic representations

In this section, π = πsm⊗ πalg where πalg is a non-trivial irreducible algebraic representation
of G over E. We begin with a simple generalization of [Hu21, Proposition 2.2] of Hu on diagrams

of k-vector spaces with trivial 0-th homology. We say that a diagram D1
r−→ D0 admits a central

character if Z acts on D0 and D1 by a character.

Lemma 4.1. Let D be a diagram D1
r−→ D0 of smooth k-representations admitting a central

character such that H0(D) = 0 and D1 is an irreducible representation of K1. Then

dimkD0 ≤ qd + 1

2
dimkD1.

Moreover, if dimkD0 = qd+1
2 dimkD1, then D0

∼= IndK0

IϖZ
D

r(D1).

Proof. Since H0(D) = 0, Ker(r) ̸= 0. Pick a non-zero I/I(1)-eigenvector v ∈ Ker(r). Let D′ ⊆ D
be the subdiagram D′

1
r′−→ D′

0 where

D′
1 = K1 · v, D′

0 = K0 · r(D′
1), and r

′ = r|D′
1
. (4.1)

Since D1 is irreducible, D1/D′
1 = 0. Further, H0(D) = 0 implies that H0(D/D′) = 0. Therefore,

D0/D′
0 = 0. Consequently, D′ = D, and thus there is a surjection

IndK0

IϖZ
D

r(D1) ↠ D0. (4.2)

Let D0
1 ⊆ D1 be the k-span of vectors ϖi

Dv for 0 ≤ i ≤ d− 1. Then D1 = D0
1 + tD0

1. Note that
t is a linear isomorphism. So

dimkD1

2
≤ dimkD0

1.

Moreover, as r(v) = 0 and r is ϖZ
D-linear, we have D0

1 ⊆ Ker(r). Thus

dimkD1

2
≤ dimkD0

1 ≤ dimkKer(r).

Therefore, dimkD1 = dimkr(D1) + dimkKer(r) ≥ dimkr(D1) +
dimkD1

2 . Hence dimkr(D1) ≤
dimkD1

2 . Now it follows from (4.2) that

dimkD0 ≤ qd + 1

2
dimkD1
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because [K0 : IϖZ
D] = qd + 1.

If dimkD0 = qd+1
2 dimkD1, then from (4.2), we get that dimkD1

2 ≤ dimkr(D1). By the previous

paragraph, this implies dimkD1

2 = dimkr(D1) and thus D0
∼= IndK0

IϖZ
D

r(D1). □

Remark 4.2. In the above lemma, if D1 is not irreducible, then the diagram D has a filtration by
subdiagrams whose graded pieces are the diagrams of the form (4.1). Thus the same dimension

relation as in the lemma holds if dimkD1 <∞. Further, if dimkD0 = qd+1
2 dimkD1, then for any

graded piece Q1
r−→ Q0 of D, Q0

∼= IndK0

IϖZ
D

r(Q1).

The next lemma is well-known:

Lemma 4.3. Suppose a group H acting on a finite-dimensional Qp-vector space V stabilizes a
lattice in V . Then H stabilizes finitely many homothety classes of lattices in V if and only if its
action on V is irreducible.

Proof. The group H acts irreducibly on V if and only if its image H in GL(V ) is not contained
a proper parabolic subgroup of GL(V ) ∼= GLn(Qp). Suppose H is contained a proper parabolic
subgroup of GLn(Qp). Since H stabilizes a lattice, without loss of generality, we may assume

that H is a subgroup of a standard proper parabolic subgroup of GLn(Zp) corresponding to the
partition n = n1 + . . . + nk. For m ∈ N, consider the lattice Lm given by the direct sum of n1
copies of 1

pmZp and n2 + . . .+ nk copies of Zp. Then H stabilizes the infinite family {[Lm]}m∈N
of homothety classes of lattices.

Conversely, assume that H stabilizes an infinite family of homothety classes of lattices. Fix
a set {gα} of representatives for GLn(Qp)/Q×

p GLn(Zp) such that gα = (gαij) ∈ Mn(Zp). If
L0 = Zp ⊕ . . .⊕ Zp denotes the standard lattice in Qnp , then

gαL0 =

n⊕
i=1

pminj{valp(gαij)}Zp.

By assumption, H stabilizes a family {gαL0 : α ∈ I} of lattices where I is not finite. Thus there
exists i, 1 ≤ i ≤ n, such that

max
α∈I

{min
j

{valp(gαij)}}

is not bounded. Consequently, we find that
⋂
α∈I gαL0 is contained in a proper subspace of V

stable under the action of H, i.e., the H-action on V is reducible. □

Let τ = IndD
×

D(1)D×
d′
θ be a smooth absolutely irreducible tamely ramified representation of D×

of dimension d′.

Lemma 4.4. (i) As I/I(1)-representations,

St(τ)I(1) ∼= Sp(τ)I(1) ∼= (θ ⊕ θq ⊕ . . .⊕ θq
d′−1

)⊗ (θ ⊕ θq ⊕ . . .⊕ θq
d′−1

).

(ii) The representations St(τ)I(1) and Sp(τ)I(1) are irreducible as K1-representations if and only
if d′ = 1, 2.

Proof. We prove lemma for St(τ); the proof for Sp(τ) is similar.
(i) By [MP96, Proposition 6.7], the natural T -equivariant surjective map

St(τC) ↠ St(τC)N

from the Steinberg representation to its smooth Jacquet module induces a (T ∩ I)-equivariant
isomorphism

St(τC)
I(1) → (St(τC)N )T∩I(1).

By [Rag07, Theorem 2.2 (ii)], St(τC)N ∼= τC| · |
a+d
2d

C ⊗ τC| · |
− a+d

2d

C as T -representations. So the
group T ∩ I(1) = D(1)×D(1) acts trivially on St(τC)N because τC is tamely ramified, i.e.,

(St(τC)N )T∩I(1) = St(τC)N .

Since all the representations are defined over E, it follows that

St(τ)I(1) ∼= τ | · |
a+d
2d ⊗ τ | · |−

a+d
2d
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as E-linear I/I(1)-representations. Now, (i) follows from the isomorphisms

τ | · |
a+d
2d ∼= τ | · |−

a+d
2d ∼= θ ⊕ θq ⊕ . . .⊕ θq

d′−1

as O×
D/D(1)-representations.

(ii) The I/I(1)-representation St(τ)I(1) is a sum of d′2 distinct I/I(1)-characters because
the Galois conjugates of θ are distinct. Recall that K1 is generated by I and t. So the K1-
subrepresentation of St(τ)I(1) generated by a non-zero I/I(1)-eigenvector has dimension at most
2d′. Hence St(τ)I(1) is reducible if d′ > 2. Conversely, if d′ = 2, it is easy to check that any
of the four I/I(1)-characters in St(τ)I(1) generate the whole representation under the action of
t. □

By Frobenius reciprocity, there are non-zero maps of K-representations

IndKI (θq
i

⊗ θq
j

) → St(τ)K(1) and IndKI (θq
i

⊗ θq
j

) → Sp(τ)K(1)

for all 0 ≤ i, j ≤ d′ − 1. The representations IndKI (θq
i ⊗ θq

j

) are irreducible if i ̸= j. Thus,

IndKI (θq
i

⊗ θq
j

) ⊆ St(τ)K(1) and IndKI (θq
i

⊗ θq
j

) ⊆ Sp(τ)K(1) (4.3)

for all 0 ≤ i < j ≤ d′−1. If i = j, then IndKI (θq
i⊗θqi) is a sum of 2 irreducible subrepresentations

θq
i ◦ det and st(θq

i

). Here, det is the composition of the determinant character of GL2(Fqd) and
the natural surjection K ↠ GL2(Fqd).

Lemma 4.5. As K-representations

St(τ)K(1) ∼=
⊕
i<j

IndKI (θq
i

⊗ θq
j

)⊕
⊕
i

st(θq
i

) and

Sp(τ)K(1) ∼=
⊕
i<j

IndKI (θq
i

⊗ θq
j

)⊕
⊕
i

(θq
i

◦ det).

Proof. It suffices to show that θ ◦ det ⊆ Sp(τ)K(1). Indeed, if θ ◦ det ⊆ Sp(τ)K(1), then the

diagonal action of ϖD gives θq
i ◦ det ⊆ Sp(τ)K(1) for all i, and the multiplicity-freeness of

St(τ)I(1) and Sp(τ)I(1) then implies that st(θq
i

) ⊆ St(τ)K(1) for all i. We may use [MS14,
Proposition 7.21(1)] to conclude that θ ◦ det ⊆ Sp(τ)K(1). □

Theorem 4.6. Let τ be a smooth absolutely irreducible tamely ramified representation of D×

of dimension d′ ≤ 2. Let π = St(τ)⊗ πalg be an irreducible locally algebraic representation with
integral central character. Then π admits an integral structure.

Proof. Let V1 = St(τ)I(1) ⊗ πalg and V0 = St(τ)K(1) ⊗ πalg. The group K1 is isomorphic to
I ⋊ tZ. Since I is compact, t2d ∈ Z, and Z acts on V1 by an integral character, it follows that V1
contains a K1-lattice L1. Moreover, as St(τ)I(1) is an irreducible K1-representation by Lemma
4.4 (ii) and πalg is also an irreducible K1-representation, V1 is an irreducible locally algebraic
representation of K1. Thus V1 contains finitely many homothety classes of K1-lattices by Lemma
4.3.

Suppose π is not integral. Then, by Corollary 2.2, the increasing sequence of K1-lattices (L
(i)
1 )i

of V1 does not become stationary. By the previous paragraph, there is i0 > 0 such that L
(i0)
1

and L1 are in the same homothety class, i.e., L
(i0)
1 = ϖjL1 for some j < 0. Let L0 = K0 · L1

and L
(i0)
0 = K0 · L(i0)

1 = ϖjL0. Let

DO = L1 ↪→ L0 and D(i0)
O = L

(i0)
1 ↪→ L

(i0)
0

be the corresponding diagrams of free OKi-modules. The diagram D(i0)
O is equal to the diagram

ϖjDO. Thus the natural surjective map H0(DO) ↠ H0(D(i0)
O ) gives H0(ϖ

jDO/DO) = 0. By
dévissage, we have H0(Dk) = 0 where Dk = DO ⊗O k = ϖ−1DO/DO. By Lemma 4.1 and

Remark 4.2, we get that dimk(L0 ⊗O k) ≤ qd+1
2 dimk(L1 ⊗O k). Since dimk(L0 ⊗O k) = dimEV0

and dimk(L1 ⊗O k) = dimEV1, we obtain dimEV0 ≤ qd+1
2 dimEV1. However, it follows from

Lemma 4.4 (i) that

dimESt(τ)
I(1) = d′2,
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and from Lemma 4.5 that

dimESt(τ)
K(1) =

1

2
(d′2 − d′)(qd + 1) + d′qd.

This implies that dimEV0 >
qd+1

2 dimEV1. A contradiction. □

4.1. An example of an integral locally algebraic Speh representation. For simplicity,

we take D to be the quaternionic division algebra in this subsection. Let τ = IndD
×

D(1)D×
2
θ be

a smooth absolutely irreducible tamely ramified representation of D× over E. Note that τ has
dimension 2 and hence Sp(τ) is infinite-dimensional. Consider the following irreducible locally
algebraic representation

π := Sp(τ)⊗ (Sym1E4 ⊗ det−
1
4 )

of G. Here, G acts on the algebraic representation via G ↪→ GL4(F2) ↪→ GL4(E) induced by the

map D → M2(F2), α+ βϖD 7→
(

α βϖF

σ(β) σ(α)

)
where σ is the unique non-trivial automorphism in

Gal(F2/F ). We assume that ωτ is integral so that the central character ωπ of π is integral. We
now show that π is integral which, in particular, implies that Emerton’s conditions are sufficient
for the integrality of π. We take s =

(
0 1
−1 0

)
in this subsection so that det(s) = 1.

Proposition 4.7. The representation π admits an integral structure.

Proof. Recall from Lemma 4.5 that

Sp(τ)K(1) = (θ ◦ det)⊕ (θq ◦ det)⊕ IndKI (θ ⊗ θq),

Sp(τ)I(1) = (θ ⊗ θ)⊕ (θq ⊗ θq)⊕ (θ ⊗ θq)⊕ (θq ⊗ θ).

Let e1 be a non-zero vector in the underlying space of the character θ ◦ det. Then e2 := t2e1
and e0 := te1 are the non-zero vectors in the underlying spaces of the characters θq ◦ det and
θ ⊗ θq of K and I respectively. Note that (θ ◦ det)|I = θ ⊗ θ and (θq ◦ det)|I = θq ⊗ θq. The

K-representation IndKI Ee0 is stable under the action of t2. Thus t2e0 = εϖνf0 for some ε ∈ O×

and ν ∈ Z where f0 =
∑
x uxse0 ∈ (IndKI Ee0)

I(1) is a function supported on IsI(1). Let

q = ε′ϖν′
where ε′ ∈ O× and ν′ ∈ Z. The evaluation of the I(1)-invariant function

∑
x uxsf0

on 1 is q2 and on s is 0. Thus
∑
x uxsf0 = q2e0. Using that t2 ◦ (

∑
x uxs) = (

∑
x uxs) ◦ t2 and

that the action of t4 is by multiplication by a unit, one obtains that ν = −ν′.
Consider the K-lattice

M0 = Sym1O4 ⊗ det−
1
4 = OX1 ⊕OX2 ⊕OY1 ⊕OY2

in the representation Sym1E4 ⊗ det−
1
4 . Then M1 = (M0 + tM0) + t2(M0 + tM0) is a K1-lattice

in Sym1E4 ⊗ det−
1
4 . One computes that

M1 = ϖ
−1
4

F OX1 ⊕ϖ
−3
4

F OX2 ⊕ϖ
0
4

FOY1 ⊕ϖ
−2
4

F OY2

= ϖ
−e
4 OX1 ⊕ϖ

−3e
4 OX2 ⊕ϖ0OY1 ⊕ϖ

−2e
4 OY2

where e is the ramification index e(E/F ). Note that 4 divides e because E is taken large enough

to contain ϖ
1
4

F . Hence ν′ ≥ e ≥ 4 and ν ≤ −4.
Consider the following K1-lattice of V1:

L
(0)
1 = L1 := (ϖ0Oe1 ⊕ϖ0Oe2 ⊕ϖ0Oe0 ⊕ϖνOf0)⊗M1.

For the ease of computation, we write L
(0)
1 as follows:

L
(0)
1 = (0e1 ⊕ 0e2)⊗ (−e4 X1 ⊕ −3e

4 X2 ⊕ 0Y1 ⊕ −2e
4 Y2)

⊕ (0e0 ⊕ νf0)⊗ (−e4 X1 ⊕ −3e
4 X2 ⊕ 0Y1 ⊕ −2e

4 Y2).



INTEGRALITY OF LOCALLY ALGEBRAIC REPRESENTATIONS OF GL2(D) 13

Let us record the actions of uxs, t, and t
2:

uxs((ae1 ⊕ be2)⊗ (n1X1 ⊕ n2X2 ⊕m1Y1 ⊕m2Y2))

= (ae1 ⊕ be2)⊗ (n1([x]X1 + Y1)⊕ n2([x
q]X2 + Y2)⊕m1X1 ⊕m2X2),

t((ae1 ⊕ be2)⊗ (n1X1 ⊕ n2X2 ⊕m1Y1 ⊕m2Y2))

= (ae0 ⊕ (b+ ν)f0)⊗ ((n1 +
−e
4 )Y2 ⊕ (n2 +

3e
4 )Y1 ⊕ (m1 +

−e
4 )X1 ⊕ (m2 +

−e
4 )X2),

t2((ae1 ⊕ be2)⊗ (n1X1 ⊕ n2X2 ⊕m1Y1 ⊕m2Y2))

= (be1 ⊕ ae2)⊗ ((n1 +
−2e
4 )X2 ⊕ (n2 +

2e
4 )X1 ⊕ (m1 +

−2e
4 )Y2 ⊕ (m2 +

2e
4 )Y1),

t((ae0 ⊕ bf0)⊗ (n1X1 ⊕ n2X2 ⊕m1Y1 ⊕m2Y2))

= ((b− ν)e1 ⊕ ae2)⊗ ((n1 +
−e
4 )Y2 ⊕ (n2 +

3e
4 )Y1 ⊕ (m1 +

−e
4 )X1 ⊕ (m2 +

−e
4 )X2),

t2((ae0 ⊕ bf0)⊗ (n1X1 ⊕ n2X2 ⊕m1Y1 ⊕m2Y2))

= ((b− ν)e0 ⊕ (a+ ν)f0)⊗ ((n1 +
−2e
4 )Y2 ⊕ (n2 +

2e
4 )Y1 ⊕ (m1 +

−2e
4 )X1 ⊕ (m2 +

2e
4 )X2).

We thus have∑
x

uxs((ae0 ⊕ bf0)⊗ (n1X1 ⊕ n2X2 ⊕m1Y1 ⊕m2Y2))

= ((b− 2ν)e0 ⊕ af0)⊗ ((m1 − 2ν)X1 ⊕ (m2 − 2ν)X2)⊕ (n1 − 2ν)Y1 ⊕ (n2 − 2ν)Y2.

We now compute L
(1)
1 in two steps:

(i)

(K0 · L(0)
1 ) ∩ V1 = (0e1 ⊕ 0e2)⊗ (−e4 X1 ⊕ −3e

4 X2 ⊕ −e
4 Y1 ⊕

−3e
4 Y2)

⊕ (0e0 ⊕ νf0)⊗ (−e4 X1 ⊕ −3e
4 X2 ⊕ 0Y1 ⊕ −2e

4 Y2).

In the above computation, we used s(ei⊗Xj) = ei⊗Yj for the first half of the lattice (K0·L(0)
1 )∩V1.

That the second half of the lattice (K0 · L(0)
1 ) ∩ V1 is the same as that of L

(0)
1 follows because

ν ≤ −4 and thus the contribution from the action of
∑
x uxs is already in the lattice L

(0)
1 .

Consequently, we have

t((K0 · L(0)
1 ) ∩ V1) = (0e0 ⊕ νf0)⊗ (−2e

4 Y2 ⊕ 0Y1 ⊕ −2e
4 X1 ⊕ −4e

4 X2)

⊕ (0e1 ⊕ 0e2)⊗ (−2e
4 Y2 ⊕ 0Y1 ⊕ −e

4 X1 ⊕ −3e
4 X2).

(ii)

(K0 · L(0)
1 ) ∩ V1 + t((K0 · L(0)

1 ) ∩ V1) = (0e1 ⊕ 0e2)⊗ (−e4 X1 ⊕ −3e
4 X2 ⊕ −e

4 Y1 ⊕
−3e
4 Y2)

⊕ (0e0 ⊕ νf0)⊗ (−2e
4 X1 ⊕ −4e

4 X2 ⊕ 0Y1 ⊕ −2e
4 Y2).

Thus

t2((K0 · L(0)
1 ) ∩ V1 + t((K0 · L(0)

1 ) ∩ V1)) = (0e1 ⊕ 0e2)⊗ (−3e
4 X2 ⊕ −e

4 X1 ⊕ −3e
4 Y2 ⊕ −e

4 Y1)

⊕ (0e0 ⊕ νf0)⊗ (−4e
4 X2 ⊕ −2e

4 X1 ⊕ −2e
4 Y2 ⊕ 0Y1).

It follows from step (ii) that

L
(1)
1 = (K0 · L(0)

1 ) ∩ V1 + t((K0 · L(0)
1 ) ∩ V1) + t2((K0 · L(0)

1 ) ∩ V1 + t((K0 · L(0)
1 ) ∩ V1))

= (0e1 ⊕ 0e2)⊗ (−e4 X1 ⊕ −3e
4 X2 ⊕ −e

4 Y1 ⊕
−3e
4 Y2)

⊕ (0e0 ⊕ νf0)⊗ (−2e
4 X1 ⊕ −4e

4 X2 ⊕ 0Y1 ⊕ −2e
4 Y2).

Consequently

(K0 · L(1)
1 ) ∩ V1 = (0e1 ⊕ 0e2)⊗ (−e4 X1 ⊕ −3e

4 X2 ⊕ −e
4 Y1 ⊕

−3e
4 Y2)

⊕ (0e0 ⊕ νf0)⊗ (−2e
4 X1 ⊕ −4e

4 X2 ⊕ 0Y1 ⊕ −2e
4 Y2) = L

(1)
1 .

Hence L
(2)
1 = L

(1)
1 and π is integral by Corollary 2.2. □
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Remark 4.8. The genericity of πsm is important in the formulation of the Breuil-Schneider
conjecture which predicts the existence of integral structures in locally algebraic representations
of GLn(F ) [BS07, p. 16]. In view of this, the integrality of the infinite-dimensional locally
algebraic Speh representation in Proposition 4.7 seems to be related to the fact that Sp(τ)C has
a non-zero twisted Jacquet module if and only if Sp(τ)C is infinite-dimensional, equivalently,
if dimE(τ) > 1. Indeed, it follows from [PR00, Theorem 3.1] that for any smooth irreducible
infinite-dimensional complex representation V of G = GL2(D), there is a short exact sequence
of B-representations

0 −→ C∞
c (D×, VN,ψ) −→ V −→ VN −→ 0

(see also [Rag07, Theorem 2.1]). If V = Sp(τ)C is infinite-dimensional, then VN,ψ ̸= 0 because
VN is finite-dimensional. On the other hand, if V = Sp(τ)C is finite-dimensional, then it has
dimension 1 and thus τ has dimension 1. By [PR00, Theorem 2.1], we have dimC(VN,ψ) +
dimC((St(τ)C)N,ψ) = 1. As St(τ)C is infinite-dimensional, (St(τ)C)N,ψ ̸= 0. Hence VN,ψ = 0.
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MR 2292633
[GeK14] Elmar Groß e Klönne, On the universal module of p-adic spherical Hecke algebras, Amer. J. Math.

136 (2014), no. 3, 599–652. MR 3214272

[Hu09] Yongquan Hu, Normes invariantes et existence de filtrations admissibles, J. Reine Angew. Math. 634
(2009), 107–141. MR 2560407

[Hu21] Yong Quan Hu, A note on integral structures in some locally algebraic representations of GL2, Acta

Math. Sin. (Engl. Ser.) 37 (2021), no. 1, 59–72. MR 4204535
[MP96] Allen Moy and Gopal Prasad, Jacquet functors and unrefined minimal K-types, Comment. Math.

Helv. 71 (1996), no. 1, 98–121. MR 1371680
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