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Abstract

Let Gspinm be the quasi-split general spin group over a p-adic field F for a positive integer m. For

a certain class of quasi-split reductive groups, including the general spin groups, a specific involution

ι, called the duality involution, is constructed in [Pra19]–generalising the MVW involution on the

classical groups. In this article, for any irreducible admissible representation (π, V ) of Gspinm(F ),

we show that π∨ ≃ πι. Here π∨ is the contragredient of π and πι is the composite of π with ι. We

also prove the analogue of this result for the split general spin groups over Fq((t)).

1 Introduction

Let F be a non-Archimedean local field with the ring of integers oF . Let pF be the maximal ideal of

oF , and let kF be the residue field of F . Let H be a connected reductive algebraic group defined over

F , and let H be the group of F -rational points of H. Let (π, V ) be an irreducible admissible complex

representation of H with (π∨, V ∨), the contragredient (or smooth dual) of (π, V ).

Though the contragredient representation π∨ of an irreducible admissible representation π is defined

on the space V ∨, the space of smooth linear functionals, one can often realize this representation on

the space V itself. This explicit realisation of the contragredient representations goes back to the work

of Gelfand and Kazhdan [GK75]. We recall their result for general linear groups. For g ∈ GLn(F ),

let tg denote the transpose of g. Define an involution g 7→ gδ on GLn(F ) where gδ := tg−1 (here δ is

merely a symbol to keep consistency with the later discussion). Let (π, V ) be an irreducible admissible

representation of GLn(F ). Define the representation (πδ, V ) (on the same space as of π) by

πδ(g) := π(gδ).

Gelfand and Kazhdan proved that the representations πδ and π∨ are isomorphic. This theorem is referred

to as the duality theorem for general linear groups.

An extension of the duality theorem for other groups depends on a suitable choice of the involution

g 7→ gδ. The duality theorems have been proved for classical groups and metaplectic groups by Moeglin-

Vignéras-Waldspurger in [MgVW87]. They proved that the involution g 7→ gδ is given by conjugation of

g by an element δ from outside the given group, i.e., it is an outer involution. The involution g 7→ gδ is

referred to as MVW involution. The duality theorems have been proved for similitude classical groups

by Roche-Vinroot [RV18, Theorem B]. It is worth mentioning in passing that the existence of MVW

involutions have also been proved for real quaternionic classical groups in [LST14].

In this article, we focus on the general spin groups G′ := GSpinm where m is a positive integer.

These groups are certain algebraic covers of special orthogonal groups G := SOm. The notations G and

G′ will be fixed throughout the paper. Before we state the main theorem of this paper, let us recall the
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following. For a certain class of quasi-split reductive groups H defined over F (including the general spin

groups), an involution ιH (called the duality involution) has been constructed in [Pra19] as an element of

Aut(H)(F ) which is given by the composite of two involutions one fixing a pinning (H,B,S, {Xα}) and
the other automorphism which takes each Xα to −Xα for all Xα occurring in the pinning. Note that

S is a maximal torus of H contained in B. The construction of this involution ιH is recalled in Section

2.2. For an irreducible admissible representation (π, V ) of the group G′ := GSpinm(F ), we define the

representation (πιG′ , V ) of G′ by

πιG′ (g) := π(ιG′(g)) ∀ g ∈ G′.

We prove the following theorem on the contragredients of irreducible admissible representations of a

quasi-split general spin groups over p-adic fields:

Theorem 1.1. Let F be a p-adic field and let G′ := GSpinm be a quasi-split general spin group defined

over F . Let (π, V ) be an irreducible admissible representation of the quasi-split general spin group G′.

The involution ιG′ (called the duality involution) constructed by [Pra19] has the property that πιG′ ∼= π∨.

Since general spin groups are algebraic covers of special orthogonal groups, we make use of the MVW

involution on special orthogonal groups (which is known from [MgVW87]) to prove our theorem. Using

Theorem 1.1 and the ‘close field’ arguments (see [Gan15, §2.3]), we prove the duality theorem for split

general spin groups over function fields also.

Theorem 1.2. Let F be a finite extension of the field of Laurent series Fq((t)) and let G′ := GSpinm

be a split general spin group defined over F . Let (π, V ) be an irreducible admissible representation of G′.

The involution ιG′ (called the duality involution) constructed by [Pra19] has the property that πιG′ ∼= π∨.

For any p-adic general spin group G′, it is possible to extend the MVW-involution δ on G to an

involution θ on G′ such that the dual of an irreducible admissible representation (π, V ) of G′ is isomorphic

to the twisted representation πθ (see Remark 2). Let us briefly describe the contents of this paper. In

Section 2, we describe the general spin groups and the basics of duality involution. In Section 3, we recall

the construction of duality involution, following [Pra19], of GSpinm(F ) and show that this is compatible

with the MVW involution of SOm(F ). Finally in Section 4, we prove Theorems 1.1 and 1.2. In particular,

Theorem 1.1 is proved in Section 4.1 by using the duality involution constructed in Section 3. Theorem

1.2 is proved in Section 4.2.

2 Preliminaries

Let F be a non-Archimedean local field with its norm | |ν . For any affine algebraic variety V defined

over F , the set of F -rational points V (F ) is equipped with the natural topology induced from the norm

| |ν on F , and we refer to this topology as the ν-adic topology on V (F ) (see [PR83, Section 3.1]). For

any linear algebraic group H over F , the ν-adic topology on H(F ) makes it an l-group in the sense of

[BZ76].

2.1 The General spin group

Let W be an m dimensional vector space over F with q : W −→ F , a quadratic form on W . The pair

(W, q) is called a quadratic space. Let T (W ) be the tensor algebra of W and let I(W, q) be the 2-sided

ideal of T (W ) generated by the set of elements

{w ⊗ w − q(w) : w ∈ W}.
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Definition 2.1. The Clifford algebra C(W, q) (or C(q) if W is clear from the context) associated to the

quadratic space (W, q) is the F -algebra

C(W, q) := T (W )/I(W, q).

Note that if w is replaced by −w, the definiton of the Clifford algebra C(W, q) does not change (since

I(W, q) does not change). Let α : C(W, q) −→ C(W, q) denote the corresponding automorphism induced

by the negative automorphism of the quadratic space (W, q).

Definition 2.2. The Clifford group Γ(W, q) is the group of units u ∈ C(W, q)× such that α(u)Wu−1 =

W .

Definition 2.2 says that Γ(W, q) has a natural representation ρ on W given by

ρ(u)w = α(u)wu−1 for u ∈ Γ(W, q) and w ∈ W.

Theorem 2.3. [Knu88, Proposition 6, p. 63] The image of Γ(W, q) under ρ is Om(F ) and the kernel

of ρ is equal to the central subgroup F×. Hence Γ(W, q) fits into the following short exact sequence:

1 // Gm
ι // Γ(W, q)

p // Om
// 1 . (2.1)

Now we define the main object of the paper. The general spin group GSpinm(F ) is defined by

GSpinm(F ) := Γ(W, q) ∩ C(W, q)0,

where C(W, q)0 is the even part of the Clifford algebra C(W, q) (i.e., the image of the even part T (W )0

of T (W ) in C(W, q)). Note that the same is called special Clifford group in [Knu88, Chapter 6, p. 62]

and [Che97].

Proposition 2.4. [Knu88, Proposition 6, p. 63] As an algebraic group, GSpinm fits into the following

short exact sequence:

1 // Gm
ι // GSpinm

p // SOm
// 1 . (2.2)

We recall in passing the following alternative description of the group GSpinm. Let Spinm denote

the spin group which is an algebraic double cover of SOm, i.e., we have a short exact sequence

1 // Z2
ι // Spinm

p // SOm
// 1 . (2.3)

Following [Asg02, Definition 2.3] we define for m ≥ 3,

GSpinm :=
Gm × Spinm

{(1, 1), (−1, c)}
, (2.4)

where {1, c} is the kernel of ι in (2.3). It can be shown that (2.2) follows from this definition of GSpinm

as well. We refer to [HS16, Chapter 4] and [Asg02, §2] for details on the structure of general spin groups.

2.2 The duality involution

Let H be a quasi-split reductive algebraic group defined over F and let B be a Borel subgroup of H,

defined over F , containing a maximal torus S also defined over F . Let Φ(H,S) be the set of roots of H
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with respect to S. We denote by ∆ := ∆(H,S), the set of simple roots of Φ(H,S) with respect to B.

The tuple

P := (H,B,S, {Xα}),

with {Xα : α ∈ ∆(H,S)}, is called a pinning on H. Let wH be a representative in the normaliser

NH(S) of the longest element of the Weyl group NH(S)/S of H which takes B to the opposite Borel

B−. A Chevalley involution cH,P associated with the pinning P is the unique element of Aut(P) such

that cH,P(s) = wHs−1w−1
H , for all s ∈ S. The Chevalley involution belongs to the centre of the group

Aut(P). Hence the Chevalley involution commutes with the F -rational structure on H.

The duality involution ιH,P on H associated to the pinning P = (H,B,S, {Xα}) is of the form

ιH,P := Ad(ι−) · cH,P ,

where ι− ∈ Sad(F ) is the unique element such that α(ι−) = −1 for all α ∈ ∆(H,S). We refer to [Pra19,

§3] for details.
The group G stands for the special orthogonal group associated with the pair (W, q) consisting of

a vector space W of dimension m and q is a non-degenerate quadratic form on W . We also assume

that G is quasi-split unless mentioned otherwise. Let P = (G,B,T, {Xα}) be a pinning on G with the

associated duality involution ιG,P = Ad(ι−) · cG,P . By [Pra19, Proposition 1 and Example 2], up to

inner conjugation by an element of G, the duality involution ιG,P is independent of the choice of the

pinning P. Hence from now onward, we denote the duality involution on G by ιG. By [Pra19, Example

1, p. 5], we know that the duality involution ιG is the MVW involution for special orthogonal groups

[MgVW87, Theorem II.I, p. 91].

3 Construction of the duality involution of general spin groups

Recall that we use the notation G′ for the general spin group GSpinm. In this section, we will construct

a duality involution ιG′ of G′ which commutes with ιG of G. Though the duality involution ιG is

independent of the chosen pinning P on G, one needs to fix a pinning P of G to construct the duality

involution ιG,P of G. We will construct a pinning P ′ of G′ from the chosen pinning P of G to construct

the duality involution ιG′,P′ of G′. Finally, we will prove that the duality involution ιG′,P′ is independent

of the pinning P ′, and hence the duality involution of G′ will be denoted by ιG′ .

We first describe the Chevalley involution cG′,P′ . Let us start with the pinning P = (G,B,T, {Xα})
on G. Choose a maximal torus T′ in G′ which surjects on to T under the short exact sequence (2.2).

Let B′ be a Borel subgroup in G′ containing T′. For a simple root α ∈ Φ(G,T), the root α′ := α ◦ p
is a simple root in Φ(G′,T′). The set of simple roots in G′ is ∆′ = {α′ := α ◦ p : α ∈ ∆}. We get a

homomorphism

p∗ : Φ(G,T) −→ Φ(G′,T′)

given by α 7→ α′. Note that the root subgroups corresponding to α and α′ are isomorphic to Ga via the

map p. Let Xα′ be an element in the Lie algebra of G′ which maps to Xα under the map induced by p on

the Lie algebras of G′ and G respectively. Hence, we have obtained a pinning P ′ = (G′,B′,T′, {Xα′})
on G′. We now consider the unique Chevalley involution (up to conjugation) cG′,P′ associated to the

pinning P ′ on G′. We refer to [Pra19, §3] for details.
Let Z := Z(G) (resp. Z′ := Z(G′)) denote the centre of G (resp. G′). From the definitions

Tad := T/Z and (T′)ad := T′/Z′, we observe that the map p induces an isomorphism (T′)ad ∼= Tad. Let

ι′− ∈ (T′)ad(F ) be the element which corresponds to ι− ∈ Tad(F ) under the above isomorphism. Note

that ι′− is the unique element of (T′)ad(F ) such that α′(ι′−) = −1 for all simple roots α′ ∈ Φ(G′,T′).
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Finally we define the duality involution ιG′,P′ as ιG′,P′ := Ad(ι′−) · cG′,P′ on G′. Note that our

construction of the duality involution ιG′ apriori depends on the pinning P ′. In particular, it depends on

the chosen maximal torus T′ in G′ to begin with. The following lemma shows that ιG′,P′ is independent

of the choice of the pinning P ′ on G′.

Lemma 3.1. The duality involution ιG′,P′ , up to conjugation with an element of G′, is independent of

the choice of the pinning P ′ on G′.

Proof of Lemma 3.1. Let Z′ := Z(G′) denote the centre of G′ with Z ′ := Z′(F ), the group of F -rational

points of Z′. Let GF := Gal(F/F ) denote the absolute Galois group of F/F . We have a short exact

sequence

1 // Z′ ι // T′ p // (T′)ad // 1 , (3.1)

which gives the following long exact sequence

1 // Z ′ ι // T ′ p // (T ′)ad // H1(GF ,Z
′)

H1(ι) // H1(GF ,T
′) . (3.2)

By [Pra19, Proposition 1, p. 6], it is enough to show that 2Ker {H1(GF ,Z
′) −→ H1(GF ,T

′)} = 0. We

know the structure of Z′ and T′ from [AS06, Proposition 2.3, p. 143].

When m is odd, we know that Z′ ∼= Gm and hence H1(GF ,Z
′) = 0 from Hilbert’s Theorem 90 [Ser79,

Proposition 2, p. 150]. When m is even note that Z′ contains Gm with quotient isomorphic to Z2. Thus,

we observe that 2H1(GF ,Z
′) = 0 in this case. Hence the required condition is satisfied and the lemma

is proved in this case.

Hence, from now onward, we denote the duality involution on G′ by ιG′ instead of ιG′,P′ . In the

next lemma we prove that ιG′ commutes with ιG.

Lemma 3.2. The duality involution ιG′ of G′ commutes with the duality involution ιG of G, i.e., we

have the following commutative diagram:

G′ p //

ιG′

��

G

ιG

��
G′

p
// G.

(3.3)

Proof of Lemma 3.2. We look at the following short exact sequence defining the group G′:

1 // Gm
ι // G′ p // G // 1 .

Note that, it is enough to show that the maps p ◦ ιG′ and ιG ◦ p factor through Gm. Since ιG′ =

Ad(ι′−) · cG′,P′ , it is enough to prove that both the automorphisms Ad(ι′−) and cG′,P′ factor through

Gm. Since Gm ⊆ Z′ and Ad(ι′−) is an inner automorphism by ι′− ∈ (T′)ad(F ), it is clear that Gm is

invariant under ι′−.

Let wG′ be a representative in NG′(T′) of the longest element in the Weyl group of G′ (taking B′

to the opposite Borel (B′)−). The explicit construction of cG′,P′ as in [Pra19, Section 3], says that

cG′,P′(t) = wG′t−1w−1
G′ ∀t ∈ T′.
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Since wG′ acts trivially on Z′, we have cG′,P′(z) = z−1 ∀ z ∈ Z′. Hence Gm is invariant under cG′,P′ as

well. This proves the lemma.

The next lemma is the central technical result in this paper. Before stating the lemma, let us recall

the following. Let H be a connected reductive group defined over F . An element h of H is said to be

regular if dimF CH(h) = rankH, where CH(h) denotes the centralizer of h in H. An element h of H is

called strongly regular if CH(h) is a maximal torus in H. Such an element is regular and semisimple by

definition. Let Hsr be the set of strongly regular elements of H. Note that Hsr is a Zariski-open subset

of H [Ste65, §2.15, p. 54]. Although the proof in [Ste65, §2.15, p. 54] is written for semisimple groups,

the same proof works for the case of reductive groups. For any irreducible smooth variety V defined

over F , and for any Zariski-open F -subvariety W of V , the set W (F ) is dense in V (F ) for the ν-adic

topology on V (F ) induced from that of F (see [PR83, Lemma 3.2, p. 114]). Thus, we get that Hsr(F )

is dense in H(F ) for the ν-adic topology on H(F ) induced from F .

We have the following lemma:

Lemma 3.3. Let g be a strongly regular element in G′. Then gιG′ and g−1 are conjugate in G′.

Proof of Lemma 3.3. We first prove that g−1 and gιG′ are conjugate in G′ and then show that the

conjugation actually takes place in G′.

Since g is a strongly regular semisimple element in G′, the G′-centralizer CG′(g) of g is a maximal

torus in G′. Since any two maximal tori are conjugate in G′ [Spr09, Theorem 6.4.1, p. 108], there exists

h ∈ G′ such that hCG′(g)h−1 = T′.

Since hgh−1 ∈ T′, we have ιG′(hgh−1) = wG′(hg−1h−1)w−1
G′ . On the other hand, ιG′(hgh−1) =

ιG′(h)ιG′(g)ιG′(h)−1. This implies that

ιG′(g) = γg−1γ−1,

where γ is equal to ιG′(h)−1wG′h.

It remains to show that the conjugation takes place in G′ itself. Note that if γ conjugates g−1 and

gιG′ , then so does γσ for σ ∈ GF := Gal(F/F). This can be seen easily as g and gιG′ are invariant

under GF . Let T′
1 be the group CG′(g) and let T1 be the image of T′

1 under the map p. Note that

γ−1γσ ∈ T′
1 ⊆ G′, and the cocycle map fγ : GF −→ T′

1 given by σ 7→ γ−1γσ gives a cohomology class

in H1(GF ,T
′
1). It is enough to prove that

fγ ≡ 1 in H1(GF ,T
′
1).

The short exact sequence (2.2) gives rise to the following long exact sequence:

1 // F ∗ ι // T ′
1

p // T1
δ0 // H1(GF ,Gm)

H1(ι) // H1(GF ,T
′
1)

H1(p) // H1(GF ,T1) · · · . (3.4)

We first note that

H1(p) : H1(GF ,T
′
1) −→ H1(GF ,T1) (3.5)

is an embedding. This follows from the fact that H1(GF ,Gm) = {1} by Hilbert’s Theorem 90.
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Now we observe that

γg−1γ−1 =gιG′

p(γ)p(g)−1p(γ)−1 =p(gιG′ )

p(γ)p(g)−1p(γ)−1 =[p(g)]ιG (Lemma 3.3).

Hence p(γ) conjugates p(g)−1 and [p(g)]ιG in G. Note that p(g) is a strongly regular element of G.

Hence as before, it follows that fp(γ) ∈ H1(GF ,T1). Since ιG is the MVW involution for G, it follows

that fp(γ) ≡ 1 in H1(GF ,T1). Since the image of fγ ∈ H1(GF ,T
′
1) in H1(GF ,T1) is fp(γ) and H1(p) :

H1(GF ,T
′
1) −→ H1(GF ,T1) is an embedding, we conclude that fγ ≡ 1 in H1(GF ,T

′
1). Thus, there

exists a t ∈ T′
1 such that fγ(σ) = tσt−1, for all σ ∈ GF . Note that γt−1 = γσ(t−1)σ, for all σ ∈ GF .

Hence γt−1 ∈ G′ and γt−1g−1tγ−1 = ιG′(g).

Remark 1. Since ιG′(t) = t−1, for all t ∈ Z(G′), the duality involution ιG′ is a non-trivial automor-

phism of G′ even if ιG is trivial. For instance when G is the group SO2n+1, the involution ιG is the

trivial automorphism.

4 Duality involution and the contragredient

We prove Theorem 1.1 and Theorem 1.2 in this section. We prove Theorem 1.1 in Section 4.1. In Section

4.2, we supply the proof of Theorem 1.2.

4.1 Proof of Theorem 1.1

Let (π, V ) be an irreducible admissible representation of the quasi-split general spin group G′ :=

GSpinm(F ) for a p-adic field F . For the duality involution ιG′ constructed in Section 3, define the

representation πιG′ of G′ by

πιG′ (g) := π(gιG′ ) ∀ g ∈ G′, gιG′ := ιG′(g).

Let (π∨, V ∨) denote the contragredient representation of (π, V ).

Let χπ denote the Harish-Chandra trace character of π (see [HC70, Theorem 5, p. 99]). For strongly

regular semisimple elements g ∈ G′, using Lemma 3.3 we get

χπι
G′ (g) = χπ(g

ιG′ ) = χπ(g
−1) = χπ∨(g).

Let the distribution Θπ on G′ defined by Θπ(f) := tr(π(f)) for f ∈ C∞
c (G′), denote the character of

π (see [BZ76, §2.17, p. 21]). Since the set of all strongly regular elements of G′ is dense in G′, we get

that

Θπι
G′ (f) = Θπ∨(f), ∀f ∈ C∞

c (G′).

Hence the theorem is proved in this case by [BZ76, Corollary 2.20, p. 21].

Remark 2. Let δ̃ be the involution on Spinm which extends the MVW involution δ on G = SOm. The

automorphism (t, g) 7→ (t−1, δ̃(g)) of the group Gm×Spinm induces an automorphism θ on G′ = GSpinm

(see (2.4)). As suggested in [Pra19, Question 1, p. 7], we can prove, even when G′ is not quasi-split, that

πθ ≃ π∨, for all irreducible smooth representations π of G′. Towards this direction, for G′ := GSpinm

(need not be quasi-split), note that Lemmas 3.2 and 3.3 hold for the automorphism θ. Hence as in

Theorem 1.1, we see that πθ ∼= π∨, for all irreducible smooth representations π of G′.
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4.2 Proof of Theorem 1.2

Now let F be a finite extension of the field of Laurent series over finite fields Fq((t)). We prove Theorem

1.2 in this case for split general spin groups. In fact, we prove a more general statement. Let H be

any split reductive group defined over Z. We prove that if Theorem 1.1 holds for H defined over p-adic

fields, then it holds for H defined over function fields using ‘close field’ arguments (see [Gan15, §2.3]).
In particular the theorem then holds for split general spin groups.

Let F ′ be a finite extension of Qp such that F and F ′ are m-close, i.e., there exists an isomorphism

of rings:

Λ : oF /p
m
F ≃ oF ′/pmF ′ .

Let H be a split reductive group defined over Z. We choose a pinning (H,B,S, {Xα}) for the group H.

Let Km and K ′
m be the m-th congruence subgroups of H(oF ) and H(oF ′) respectively. There exists an

isomorphism of Hecke algebras

ϕ : H(H(F ),Km) → H(H(F ′),K ′
m)

(we will recall the precise nature of this isomorphism in the following paragraph). Assume that ιH and

ι′H be the duality involutions on H/F and H/F ′ respectively, with respect to the chosen pinning. Note

that ιH and ι′H preserve the groups Km and K ′
m respectively. Thus, we obtain involutions on the Hecke

algebras

ιH : H(H(F ),Km) → H(H(F ),Km)

and

ι′H : H(H(F ′),K ′
m) → H(H(F ′),K ′

m).

Note that we use the same notations ιH and ι′H for the induced involutions on the Hecke algebras.

Let Φ be the set of roots of H with respect to the torus S and let B be a Borel subgroup containing

S. We denote by ∆ the set of simple roots in Φ with respect to B. Let λ ∈ X∗(S)− be the set of elements

{λ ∈ X∗(T ) : ⟨λ, α⟩ ≤ 0, α ∈ ∆}.

Let πF be a uniformizer of F and let πF ′ be a uniformizer of F ′ such that

Λ(πF + pmF ) = πF ′ + pmF ′ .

Let πλ ∈ S(F ) (resp. π′
λ) be the element λ(πF ) (resp. λ(πF ′)). Note that

H(F ) =
∐

λ∈X∗(S)−

H(oF )πλH(oF ).

The set

Cλ := {KmhKm : KmhKm ⊆ H(oF )πλH(oF )} (4.1)

is a homogenous space under

H(oF /p
m
F )×H(oF /p

m
F )

and let Γλ be the stabilizer of KmπλKm under the action of the above group. Let Γ′
λ and C ′

λ be the

corresponding objects associated with F ′. Kazhdan showed that the map Λ induces an isomorphism

of Γλ and Γ′
λ. Thus, we get a correspondence K 7→ K ′ between elements of Cλ and C ′

λ. For any

subset K of H(F ), we denote by tK the characteristic function of K and tK′ to be the characteristic
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function of the corresponding K ′ in H(F ′). The algebra H(H(F ),Km) is spanned by the set of elements

{tK : K ∈ Cλ, λ ∈ X∗(S)−}. The Kazhdan homomorphism ϕ sends the element tK to the element tK′ .

Thus, we get that Kazhdan isomorphism commutes with the duality involutions ιH and ι′H constructed

by [Pra19], in the sense that:

ϕ ◦ ιH = ι′H ◦ ϕ. (4.2)

Let (π, V ) be an irreducible smooth representation of H(F ) such that V Km ̸= 0. Using the Kazhdan

isomorphism we can define a H(H(F ′),K ′
m)-module structure on V Km , to be denoted by ϕ∗(V

Km) by

setting

ϕ∗(f)v = π(ϕ−1(f))v, v ∈ V Km , f ∈ H(H(F ′),K ′
m).

We note that

[ϕ∗(V
Km)]∨ ≃ [ϕ∗(V

Km)]ι
′
H .

Note that [ϕ∗(V
Km)]∨ is isomorphic to ϕ∗((V

∨)Km) and [ϕ∗(V
Km)]ι

′
H is isomorphic to ϕ∗((V

Km)ιH).

Thus, we get that

(V Km)ιH ≃ (V ∨)Km .

This shows that the representations π∨ and πιH are isomorphic as H(F )-smooth representations. Taking

G′ = H, we complete the proof of Theorem 1.2.

Remark 3. The duality theorem for quasi-split (and non-split) general spin groups over function fields

is yet to be explored. One can ask for the duality theorem for general spin groups over finite fields as

well. These questions need possibly more attention and we hope to address these questions in future.
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