MTH201 SUMMER TERM 2021; ENDSEM

INSTRUCTOR: SANTOSH NADIMPALLI

1. 3 points +7 points

Let F be a field, and let n, m be two positive integers. We define

$$
r_{F}(n, m)=\max \left\{\operatorname{rank}(A): A \in M_{n \times m}(F): A^{t} A=0\right\} .
$$

Here, A^{t} is the transpose of the matrix A. Determine the functions $r_{\mathbb{R}}(m, n)$ and $r_{\mathbb{C}}(m, n)$.

2. 10 points

Let n be a positive integer, and let $A, B \in \mathrm{M}_{n \times n}(\mathbb{C})$ be non-zero matrices such that $A B-B A=A+B$, then show that there exists an invertible matrix P such that $P A P^{-1}$ and $P B P^{-1}$ are both upper triangular matrices.

3. 4 points +3 points

Let $A \in M_{n \times n}(F)$, and let $T_{A}: M_{n \times n}(F) \rightarrow M_{n \times n}(F)$ be the linear transformation $X \mapsto A X A$, for $X \in$ $M_{n \times n}(F)$. What is the rank of T_{A} ? Show that there exists a matrix B such that $A B A=A$.

4. 7 points +8 points

Given any finite subset S of a finite dimensional \mathbb{Q}-vector space V, show that there exists a linear functional $l: V \rightarrow \mathbb{Q}$ such that $l(x) \neq 0$, for any $x \in S$. Now use this to show the following: Let n be a positive integer and, let $X=\left\{x_{1}, x_{2}, \ldots, x_{2 n-1}\right\}$ be a subset of $\mathbb{R} \backslash \mathbb{Q}$ with $|X|=2 n-1$. Prove that there exists $Y=\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$ a subset of X with $|Y|=n$ such that for all vectors $\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in \mathbb{Q}^{n}$ with $a_{1} \geq 0, a_{2} \geq 0, \ldots, a_{n} \geq 0$ and $\sum_{i=1}^{n} a_{i}>0$, the number $\sum_{i=1}^{n} a_{n} y_{n} \in \mathbb{R} \backslash \mathbb{Q}$.

5. 5 points +5 points

Let $V_{n} \subset \mathbb{C}[X, Y]$ be the vector space of polynomials in two variables X, Y of degree less than or equal to n. Let $T: V_{n} \rightarrow V_{n}$ be the operator $f \mapsto Y \frac{\partial f}{\partial X}$. What are the invariant subspaces of T. What are the invariant subspaces of $S: V_{n} \rightarrow V_{n}$ given by $f \mapsto X \frac{\partial f}{\partial Y}-Y \frac{\partial f}{\partial X}$

6. 8 points

Let $B: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a positive definite bilinear form. Let $S \subseteq \mathbb{R}^{n}$ be a set of vectors such that $B(v, w)<0$, for any $v, w \in S$ with $v \neq w$. Is S finite? and if S is a finite set determine the maximum possible size of S.
or
Let $p(t) \in \mathbb{R}[t]$ be a monic polynomial in one variable t. Does there exists a matrix $M \in M_{n \times n}(\mathbb{R})$ such that $\operatorname{det}(M-t \mathrm{id})=p(t)$

