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Abstract. Let p and l be distinct odd primes and let n ≥ 2 be a positive integer. Let E be a finite Galois

extension of degree l of a p-adic field F . Let q be the cardinality of the residue field of F . Let πF be an
integral l-adic generic representation of GLn(F ) and let πE be the base change of πF . Let W0(πE , ψE)

be the integral Whittaker model of πE , i.e., the lattice of Zl-valued functions in the Whittaker model of
πE . Assuming that l does not divide |GLn−1(Fq)|, we prove that the Frobenius twist of the unique generic

component of the mod-l-reduction of πF is the unique generic subquotient of the Tate cohomology group

Ĥ0(Gal(E/F ),W0(πE , ψE)) considered as a representation of GLn(F ).

1. Introduction

Let l be a prime number, and let F be a number field. Let G be a reductive algebraic group defined
over F , and let σ be an automorphism of order l of G. D.Treumann and A.Venkatesh have constructed a
functorial lift of a mod-l automorphic form for Gσ to a mod-l automorphic form for G (see [TV16]). They
conjectured that the mod-l local functoriality at ramified places must be realised in Tate cohomology, and
they defined the notion of linkage (see [TV16, Section 6.3] for more details). Among many applications of
this set up, we focus on local base change lifting from Gσ = GLn /F to G = ResE/F GLn /E, where E/F
is a Galois extension of p-adic fields with [E : F ] = l. Truemann and Venkatesh’s conjecture on linkage
in Tate cohomology is verified for local base change of depth-zero cuspidal representations by N.Ronchetti,
and a precise conjecture in the context of local base change of l-adic higher depth cuspidal representations
was formulated in [Ron16, Conjecture 2]. In this article, using Whittaker models and Rankin-Selberg zeta
functions, we prove this conjecture for GLn under the assumption that l does not divide the pro-order of
GLn−1(F ) whenever n > 2. In fact, when l does not divide the pro-order of GLn(F ), we prove a much stronger
theorem that the Frobenius twist of a mod-l generic representation of GLn(F ) occurs as a sub-quotient of
the zeroth Tate cohomology of its l-adic base change lift to GLn(E) (see Theorem 6.7).

Let us introduce some notations for stating the results of this article. From now, we assume that F is a
finite extension of Qp with residue field Fq. Let E be a finite Galois extension of prime degree over F with
[E : F ] = l and l ̸= p. Let πF be an integral l-adic generic representation of GLn(F ). The mod-l-reduction
of πF has a unique generic component and it is denoted by Jl(πF ) (see [Vig01, Section 1.8.4]). The base
change lift of πF to GLn(E) is denoted by πE (for definition, see subsection (4.2)). Note that there exists an
isomorphism T : πE → πγE , where π

γ
E is the twist of πE by a generator γ of Gal(E/F ). Let ψ be an additive

character of F and let ψE be the character ψ◦TrE/F of E. The space of Zl-valued functions in the Whittaker

model W(πE , ψE) of πE , denoted by W0(πE , ψE), is stable under GLn(E) and the operator T (see Section
2.7.6). In this article, Tate cohomology groups are always with respect to the action of Gal(E/F ). We prove
the following theorem:

Theorem 1.1. Let F be a finite extension of Qp, and let E be a finite Galois extension of F with [E : F ] = l,
where p and l are distinct odd primes such that that l does not divide |GLn−1(Fq)| whenever n ≥ 3. Let πF
be an integral l-adic generic representation of GLn(F ) and let Jl(πF ) be the unique generic component of
the mod-l reduction of πF . Let πE be the base change lifting of πF to GLn(E). Then the Frobenius twist of

Jl(πF ) occurs as a subquotient of the GLn(F ) representation Ĥ
0(W0(πE , ψE)).

We note some immediate remarks on the hypothesis in Theorem 1.1. As a consequence of Proposition 6.3
in Section 6, the Frobenius twist of Jl(πF ) is in fact the unique generic sub-quotient of the Tate cohomology

group Ĥ0(W0(πE , ψE)). We use Kirillov and Whittaker models of generic representations to prove our main
result. The hypothesis that l does not divide the pro-order of GLn−1(F ) is required in the proof of a vanishing
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result of Rankin–Selberg integrals on GLn−1(F ) (the analogue of [JPSS81, Lemma 3.5] or [BH03, 6.2.1]).
This condition on l may be removed using γ-factors defined over local Artinian Fl-algebras as defined in the
work of G.Moss and N.Matringe in [MM22]. However, the right notion of base change over local Artinian Fl-
algebras is not clear to the authors and hence, we use the mild hypothesis that l does not divide |GLn−1(Fq)|.
If πF and πE are both cuspidal, then using the Kirillov model for cuspidal representations, one observes

that the Tate cohomology group Ĥ0(W0(πE , ψE)) is an irreducible GLn(F ) representation, and the above
theorem says that this Tate cohomology space is isomorphic to the Frobenius twist of mod-l reduction of πF .
This is conjectured by N. Ronchetti in [Ron16, Conjecture 2].

When l does not divide the pro-order of GLn(F ), we obtain a much precise version of our main theorem.
We can show that the first Tate cohomology of any Gal(E/F ) invariant lattice L in a generic representation

πE as in Theorem 1.1 is trivial and the zeroth Tate cohomology group Ĥ0(L) is independent of the choice

of L. Moreover, we show that the zeroth Tate cohomology group Ĥ0(L) is an irreducible representation
of GLn(F ) (see Theorem 8.3 and Corollary 8.4). Our method can also be extended to some non-generic
representations as well. Especially for those irreducible representations of GLn(E) which remain irreducible
when restricted to the mirabolic subgroup denoted by Pn(E). This class of representations are exactly the
Zelevinsky sub-representations. Assume that πE is an l-adic cuspidal representation obtained as a base
change lifting of πF to GLn(E). Let ∆ be a segment (see Section 2.7.2) on the cuspidal line of πE (defined
in Theorem 1.1). We apply Theorem 1.1 to compute the Tate cohomology of Zelevinsky subrepresentations
Z(∆) (see Theorem 7.3).

When F is a local function field, the above theorem follows from the work of T.Feng [Fen20]. T.Feng uses
the constructions of Lafforgue and Genestier-Lafforgue [GL17]. Assuming that l and p does not divide n,
N.Ronchetti proved the above results for depth-zero cuspidal representations using the compact induction
model. Our methods are very different from the work of N.Ronchetti and the work of T.Feng. We rely
on Rankin–Selberg integrals and lattices in Whittaker models. We do not require the explicit construction
of cuspidal representations. We use various properties of local ϵ and γ-factors both in l-adic and mod-l
situations associated with the representations of the p-adic group and the Weil group. The machinery of
local ϵ and γ-factors of both l-adic and mod-l representations of GLn(F ) is made available by the seminal
works of D.Helm, G.Moss, N.Matringe and R.Kurinczuk (see [HM18], [Mos16], [KM21], [KM17]).

The case where πE is a cuspidal representation of GL2(E) is considered in Theorem 6.5, The general case
is proved using induction on n in Theorem 6.7. The reader might quickly follow the proof of Theorem 6.5
before going to the general case. We sketch the proof of Theorem 1.1. The theorem is proved, inductively on
n, using the Kirillov model and using some results of Vigneras on the lattice of integral functions in a Kirillov

model being an invariant lattice. Let ψ : F → Q×
l be a non-trivial additive character and let ψE be the

character ψ◦TrE/F where TrE/F : E → F is the trace function. Let (πF , V ) be a generic l-adic representation

of GLn(F ) which lifts a generic mod-l representation of GLn(F ). In particular, V is a Ql-vector space. Let

Nn(F ) be the group of unipotent upper triangular matrices in GLn(F ). Let ΘF : Nn(F ) → Q×
l be a non-

degenerate character corresponding to ψ and we let W(πF , ψ) to be the Whittaker model of πF . Let πE be
the base change lift of πF to GLn(E). Similar notations for πE are followed where ψ is replaced with ψE . It is

easy to note that (Lemma 2.4) W(πE , ψ) is stable under the action of Gal(E/F ) on the space Ind
GLn(E)
Nn(E) ΘE .

Let πF be an integral generic l-adic representation of GLn(F ), and let W0(πF , ψ) be the set of Zl-valued
functions in W(πF , ψ). It follows from the work of Vigneras [Vig04, Theorem 2] that the subset W0(πF , ψ)
is a GLn(F )-invariant lattice. Let K(πF , ψ) be the Kirillov model of πF , and let K0(πF , ψ) be the set of
Zl-valued functions in K(πF , ψ). Using the result [MM22, Corollary 4.3] we get that the restriction map from
W0(πF , ψ) to K0(πF , ψ) is a bijection.

The integral Kirillov model K0(πE , ψE) contains compactly supported Zl-valued functions in ind
Pn(E)
Nn(E) ΘE .

Let Φ be the composite of the restriction to Pn(F ) map with mod-l reduction map

Φ : Ĥ0(K0(πE , ψE)) → Ind
Pn(F )
Nn(F )Θ

l

F .

Using compactly supported functions one can show that the inverse image of K(Jl(πF )
(l), ψ

l

F ) under the map
Φ is non-zero and it is denoted by M(πF , ψF ). Here, Jl(πF )

(l) is the Frobenius twist of Jl(πF ). To prove the
main theorem, we show that the space M(πF , ψF ) is stable under GLn(F ) and the restriction of Φ to the
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space M(πF , ψF ) is GLn(F ) equivariant. This is just equivalent to showing that

I(X,Φ(πE(wn)W ), σ(wn−1)W
′) = I(X, Jl(πF )

(l)(wn)Φ(W ), σ(wn−1)W
′), (1.1)

for all W ∈ M(πE , ψF ) and W ′ ∈ W(σ, ψl), where wn−1, wn are defined in subsection (2.2); and σ is an
l-modular generic representation of GLn−1(F ). Here, I(X,W,W ′) is a mod-l Rankin–Selberg zeta functions
written as a formal power series in the variable X instead of the traditional q−s [KM17, Section 3]. We
transfer the local Rankin–Selberg zeta functions I(X,Φ(πE(wn)W ), σ(wn−1)W

′) made from integrals on
GLn−1(F )/Nn−1(F ) to Rankin–Selberg zeta functions defined by integrals on GLn−1(E)/Nn−1(E). Then,
using local Rankin–Selberg functional equation, we show that the equality in (1.1) is equivalent to certain
identities of mod-l local γ-factors, such as (6.9).

We briefly explain the contents of this article. In Section 2, we recall various notations, conventions on
integral representations, Whittaker models and Kirillov models. In Section 3, we collect various results on
local constants both in mod-l and l-adic settings. In Section 4, we put some well known results from l-adic
local Langlands correspondence. In Section 5, we recall and set up some initial results on Tate cohomology
on lattices on smooth representations. In Section 6, we begin with a few observations on compatibility of
Jacquet and twisted Jacquet functors with Tate cohomology. Then we prove our main result Theorem 6.7.
In Section 7 and 8, in the banal case, we completely compute the Tate cohomology of the representations
Z(∆) and L(∆) using Theorem 6.7.

2. Preliminaries

2.1. Let K be a non-Archimedean local field and let oK be the ring of integers of K. Let pK be the maximal
ideal of oK and let ϖK be a uniformizer of K. Let qK be the cardinality of the residue field kK = oK/pK .
Let υK : K× → Z be the normalised valuation. We denote by νK the normalised absolute value of K
corresponding to υK . Let l and p be two distinct odd primes. Let F be a finite extension of Qp and let E be
a finite Galois extension of F with [E : F ] = l. We denote the group Gal(E/F ) by Γ.

2.2. For any ring A, let Mr×s(A) be the A-algebra of all r× s matrices with entries from A. Let GLn(K) ⊆
Mn×n(K) be the group of all invertible n× n matrices. We denote by Gn(K) the group GLn(K) and Gn is
equipped with locally compact topology induced from the local field K. For r ∈ Z, let

Grn(K) = {g ∈ Gn(K) : υK(det(g)) = r}.

We set Pn(K), the mirabolic subgroup, defined as the group:{(
A M
0 1

)
: A ∈ Gn−1(K),M ∈M(n−1)×1(K)

}
.

Let Bn(K) be the group of all invertible upper triangular matrices in Mn×n(K), and let Nn(K) be its
unipotent radical. We denote by wn the following matrix of Gn(K) :

wn =


0 1

1
.

.
1 0

 .

Let XK denote the coset space Nn−1(K) \Gn−1(K). For r ∈ Z, we denote the coset space {Nn−1(K)g : g ∈
Grn−1(K)} by Xr

K .

2.3. Fix an algebraic closure Ql of the field Ql. Let Zl be the integral closure of Zl in Ql and let Pl be the
unique maximal ideal of Zl. We have Zl/Pl ≃ Fl. We fix a square root of qF in Ql, and it is denoted by

q
1/2
F . The choice of q

1/2
F is required for transferring the complex local Langlands correspondence to a local

l-adic Langlands correspondence ([BH06, Chapter 8]). The prime number l is said to be banal for GLn(K) if
l does not divide |GLn(kK)|.
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2.4. Smooth representations and Integral representations. Let G be a locally compact and totally
disconnected group. A representation (π, V ) is said to be smooth if for every vector v ∈ V , the G-stabilizer of
v is an open subgroup of G. All the representations are assumed to be smooth and the representation spaces
are vector spaces over R, where R = Ql or Fl. A representation (π, V ) is called l-adic when R = Ql and (π, V )
is called l-modular when R = Fl. We denote by Irr(G,R), the set of all irreducible smooth R-representations
of G. Let C∞

c (G,R) denotes the set of all locally constant and compactly supported functions on G taking
values in R, where R = Ql or Zl or Fl.

Let (π, V ) be an l-adic representation of G. A lattice in V is a free Zl-module L such that L⊗Zl
Ql = V .

The representation (π, V ) is said to be integral if it has finite length as a representation of G and there exist
a G-invariant lattice L in V . A character is a smooth one-dimensional representation χ : G −→ R×. For
G = Gn(K), a character χ : K× → R× induces a character χ ◦ det : Gn(K) → R×. By abuse of notation, we
denote the character χ ◦ det by χ. In particular, the normalized absolute value of K gives a character νK of

Gn(K). We say that a character χ : G −→ Q×
l is integral if it takes values in Zl.

Let (π, V ) be an integral l-adic representation of G. Choose a G-invariant lattice L in V . Then the
group G acts on L ⊗Zl

Fl, which is a vector space over Fl. This gives an l-modular representation, which

depends on the choice of the G-invariant lattice L. By the Brauer-Nesbitt principle ([Vig04, Theorem 1]),
the semisimplification of

(
π,L⊗Zl

Fl
)
is independent of the choice of the G-invariant lattice in V . We denote

the semisimplification of the representation
(
π,L ⊗Zl

Fl
)
by rl(π). The representation rl(π) is called the

reduction modulo l of the l-adic representation π. We say that an l-modular representation σ lifts to an
integral l-adic representation π if there exists a G-invariant lattice L ⊆ π such that L ⊗Zl

Fl ≃ σ.

2.5. Parabolic induction. Let H be a closed subgroup of G. Let IndGH and indGH be the smooth induction
functor and compact induction functor respectively. We follow [BZ77] for the definitions.

Set G = Gn(K), P = Pn(K) and N = Nn(K), where Gn(K), Pn(K) and Nn(K) are defined in subsection
(2.2). Let λ = (n1, n2, ...., nt) be an ordered partition of n. Let Qλ ⊆ Gn(K) be the group of matrices of the
form 

A1 ∗ ∗ ∗ ∗
A2 ∗ ∗ ∗

. ∗ ∗
. ∗

At

,

where Ai ∈ Gni
(K), for all 1 ≤ i ≤ t. Then Qλ =Mλ⋉Uλ, whereMλ is the group of block diagonal matrices

of the form 
A1

A2

.
.
At

, Ai ∈ Gni
(K),

for all 1 ≤ i ≤ t and Uλ is the unipotent radical of Qλ consisting of matrices of the form

Uλ =


In1 ∗ ∗ ∗ ∗

In2 ∗ ∗ ∗
. ∗ ∗

. ∗
Int

,

where Ini is the ni × ni identity matrix.

Let σ be an R-representation of Mλ. Then the representation σ is considered as a representation of Qλ
by inflation via the map Qλ → Qλ/Uλ ≃ Mλ. The induced representation IndGQλ

(σ) is called the parabolic
induction of σ. We denote the normalized parabolic induction of σ corresponding to the partition λ by
iGQλ

(σ). For details, see [BZ77]. Let λ = (n1, ...., ns) be a partition of n and let σi be R-representation of Gni

for each i. We denote the parabolic induction iGQλ
(σ1 ⊗ · · · ⊗ σs) by the product symbol σ1 × · · · × σs.
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2.5.1. Let λ be an ordered partition of n. Let σ be an integral l-adic representation of Mλ and let L be a
G-invariant lattice in σ. Then by [Vig96b, I. 9.3], the space iGQλ

(L), consisting of functions in iGQλ
(σ) taking

values in L, is a G-invariant lattice in iGQλ
(σ). Moreover, we have

iGQλ
(L ⊗Zl

Fl) ≃ iGQλ
(L)⊗Zl

Fl.

Hence parabolic induction commutes with reduction modulo l that is,

rl(i
G
Qλ

(σ)) ≃ [iGQλ
(rl(σ))],

where the square bracket denotes the semisimplification of iGQλ
(rl(σ)).

2.6. Cuspidal and Supercuspidal representation. Keeping the notation as in (2.5). Let π be an ir-
reducible R-representation of G. Then π is called a cuspidal representation if for all proper subgroups
Qλ =Mλ ⋉ Uλ of G and for all irreducible R-representations σ of Mλ, we have

HomG(π, i
G
Q(σ)) = 0.

The representation π is called supercuspidal if for all proper subgroups Qλ = Mλ ⋉ Uλ of G and for all
irreducible R-representations σ of Mλ, the representation (π, V ) is not a subquotient of iGQ(σ).

Remark 2.1. Let k be an algebraically closed field and let π be a k-representation of G. If the characteristic
of k is 0 then π is cuspidal if and only if π is supercuspidal. But when characteristic of k is l > 0, there are
cuspidal representations of G which are not supercuspidal. For details, see [Vig96b, Section 2.5, Chapter 2].

2.7. Generic representation. Let ψK : K −→ R× be a non-trivial additive character of K. Let ΘK be
the character of Nn(K), defined by

ΘK(xij) := ψK(

n−1∑
i=1

xi,i+1).

Let (π, V ) be an irreducible R- representation of Gn(K). Then recall that

dimR

(
HomNn(K)(π,ΘK)

)
≤ 1.

For the proof, see [BZ76] when R = Ql and see [Vig96b] when R = Fl. An irreducible R-representation
(π, V ) of Gn(K) is called generic if

dimR

(
HomNn(K)(π,ΘK)

)
= 1.

2.7.1. Whittaker Model. Let (π, V ) be a generic R-representation of Gn(K). By Frobenius reciprocity, the

representation π is embedded in the space Ind
Gn(K)
Nn(K)(ΘK). Let W be a non-zero linear functional in the space

HomNn(K)(π,ΘK). Let W(π, ψK) ⊂ Ind
Gn(K)
Nn(K)(ΘK) be the space consisting of functions Wv, v ∈ V , where

Wv(g) :=W
(
π(g)v

)
,

for all g ∈ Gn(K). Then the map v 7→Wv induces an isomorphism from (π, V ) to W(π, ψK).

2.7.2. Segments. In this subsection, we recall the notion of segments and its associated representations. For
details, see [Zel80] for R = Ql and [KM17], [MS14] for R = Fl.

Let r, t ∈ Z with r ≤ t. A segment is a sequence ∆ = (νrKσ, ν
r+1
K σ, ..., νtKσ), with σ a cuspidal R-

representation of Gn(K). The length of ∆ is defined to be t−r+1. The parabolically induced representation

τ = νrKσ × νr+1
K σ × · · · × νtKσ.

has a quotient L(∆) such that its normalised Jacquet module with respect to the opposite of the parabolic
subgroup P(n,··· ,n) is equal to

νrKσ ⊗ νr+1
K σ ⊗ · · · ⊗ νtKσ.

Moreover, there is a unique generic sub-quotient of τ , denoted by St(σ, [r, t]) and it is called the generalised
Steinberg representation associated to ∆. We denote by St(σ, k) the representation St(σ, [0, k−1]), for k ≥ 1.
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2.7.3. Let σ be a cuspidal R-representation of Gn(K). The set {νrKσ : r ∈ Z} is called the cuspidal line of
σ and the cardinality of this set is denoted by o(σ). Recall that [MS14, Section 5.2] defines a positive integer
e(σ) as follows:

e(σ) =


+∞ if R = Ql;
o(σ) if R = Fl and o(σ) > 1;

l if R = Fl and o(σ) = 1.

(2.1)

Then for a segment ∆ = (νrKσ, . . . , ν
t
Kσ), with r ≤ t, the representation L(∆) is equal to St(σ, [r, t]) if and

only if the length of the segment ∆ is less than e(σ)([MS14, Remarque 8.14]). In this case, the segment ∆ is
called a generic segment. Note that every segment is generic for R = Ql.

2.7.4. Two segments ∆1 and ∆2 are said to be linked if ∆1 ⊈ ∆2, ∆2 ⊈ ∆1 and ∆1 ∪∆2 is a segment. The

following theorem is proved by [MS14, Theorem 9.10] for R = Fl and [Zel80, Theorem 9.7] for R = Ql.

Theorem 2.2. Let π = L(∆1) × · · · × L(∆t) be an R-representation of Gn(K), where each ∆j is generic
segment. Then π is irreducible if and only if the segments ∆i and ∆j are not linked for all i, j with i ̸= j.

An R-representation of the form L(∆1)× · · · × L(∆t), where each ∆i is generic, is called a representation
of Whittaker type. In [BZ77] and [MS14], it is shown that

Theorem 2.3. An R-representation π of Gn(K) is generic if and only if π is an irreducible R-representation
of Whittaker type.

2.7.5. In this subsection, we fix a standard lift of an l-modular generic representation of Gn(K). First recall
that any l-modular cuspidal representation of Gm(K) can be lifted to an l-adic cuspidal representation of
Gm(K) (For details, see [Vig96b, Chapter 3, 4.25]). For r ≥ 1, let ∆ = (ρ, νKρ, . . . , ν

r−1
K ρ) be a segment,

where ρ is an l-modular cuspidal representation of Gm(K) and νK is the reduction mod-l of νK . Let σ be a
cuspidal lift of ρ. If L(∆) = St(ρ, r), then by [KM17, Remark 2.16], L(∆) lifts to L(D) = St(σ, r), where D
is the segment (σ, νKσ, . . . , ν

r−1
K σ). We say that the segment D is a standard lift of the segment ∆. Let π be

a generic l-modular representation of Gn(K). Then π is of the form L(∆1)× · · · × L(∆t), where each ∆i is
a generic segment. The representation π lifts to to a generic l-adic representation τ = L(D1) × · · · × L(Dt)
of Gn(K), where each Di is a standard lift of ∆i as fixed above.

2.7.6. Let (π, V ) be an integral generic l-adic representation of Gn(K). Consider the space W0(π, ψK)
consisting of W ∈ W(π, V ), taking values in Zl. Using [Vig04, Theorem 2], the Zl-module W0(π, ψK) is a
Gn(K)-invariant lattice in W(π, ψK). The lattice W0(π, ψK) is also called the integral Whittaker model or
Whittaker lattice. Let τ be an l-modular generic representation of Gn(K) and let π be an l-adic generic
representation of Gn(K). Then the representation π is called a Whittaker lift of τ if there exists a lattice
L ⊆ W0(π, ψK) such that

L ⊗Zl
Fl ≃ W(τ, ψK),

where ψK is the reduction mod-l of ψK . Note that any standard lift of a generic l-modular representation π
is a Whittaker lift (see [KM17, Theorem 2.26]).

2.7.7. Now we follow the notations as in (2.1). Choose a generator γ of Γ. Let π be an R-representation of
Gn(E). The group Γ = Gal(E/F ) acts on Gn(E) componentwise i.e., for γ ∈ Γ, g = (aij)

n
i,j=1 ∈ Gn(E), we

set

γ.g := (γ(aij))
n
i,j=1.

Let πγ be the representation of Gn(E) on V , defined by

πγ(g) := π(γ.g), for all g ∈ Gn(E).

We say that the representation π of Gn(E) is Γ-equivariant if the representations π and πγ are isomorphic.
We now prove a lemma concerning the Γ invariance of the Whitakker model of a Γ-equivaraint representation
π of Gn(E). Let ψF and ψE be the non-trivial additive characters of F and E respectively such that
ψE = ψF ◦ TrE/F where, TrE/F is the trace map of the extension E/F . Let ΘF and ΘE be the characters
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of Nn(F ) and Nn(E) respectively, as defined in (2.7). Then ΘE = ΘF ◦ TrE/F . Now consider the action of

Γ on the space Ind
Gn(E)
Nn(E)(ΘE), given by

(γ.f)(g) := f(γ−1g),

for all γ ∈ Γ, g ∈ Gn(E) and f ∈ Ind
Gn(E)
Nn(E)(ΘE).

Lemma 2.4. Let (π, V ) be a generic R-representation of Gn(E) such that (π, V ) is Γ-equivariant. Then the
Whittaker model W(π, ψE) of π is invariant under the action of Γ.

Proof. Let W be a Whittaker functional on the representation π. For v ∈ V , we have

W (πγ(n)v) = ΘE(γn)W (v) = (ψF ◦ TrE/F )
(∑n−1

i=1 γni,i+1

)
W (v) = ΘE(n)W (v),

for all n ∈ Nn(E). Thus,W is also a Whittaker functional for the representation (πγ , V ). LetWv ∈ W(π, ψE).
Then

(γ−1.Wv)(g) =W (πγ(g)v).

From the uniqueness of the Whittaker model, we have γ−1.Wv ∈ W(π, ψE). Hence the lemma. □

2.8. Kirillov Model. Let π be a generic R-representation of Gn(K). Following the notations as in the
subsections (2.5) and (2.7), consider the space K(π, ψK) of all elements W restricted to P , where W varies
over W(π, ψK). Then K(π, ψK) is P -invariant. By Frobenius reciprocity, there is a non-zero (unique upto a

scalar) linear map Aπ : V −→ IndPN (ΘK), which is injective and compatible with the action of P . In fact,

Aπ(V ) = K(π, ψK) ≃ W(π, ψK) ≃ π.

Moreover, K(ψK) = indPN (ΘK) ⊆ K(π, ψK) and the equality holds if π is cuspidal. The space of all elements
in K(π, ψK)

(
respectively in K(ψK)

)
, taking values in Zl is denoted by K0(π, ψK)

(
respectively by K0(ψK)

)
.

We now recall the Kirillov model for n = 2 and some of its properties. For details, see [BH06]. Up to
isomorphism, any irreducible representation of P2(K), which is not a character, is isomorphic to

Jψ := ind
P2(K)
N2(K)(ψ), (2.2)

for some non-trivial smooth additive character ψ of K, viewed as character of N2(K) via standard isomor-
phism N2(K) ≃ K. Two different non-trivial characters of N2(K) induce isomorphic representations of
P2(K). The space (2.2) is identified with the space of locally constant compactly supported functions on
K×, to be denoted by C∞

c (K×,Ql). The action of P2(K) on the space C∞
c (K×,Ql) is given by[

Jψ

(
a 0
0 1

)
f

]
(y) = f(ay),[

Jψ

(
1 x
0 1

)
f

]
(y) = ψ(xy)f(y),

for a, y ∈ K× and x ∈ K. For any cuspidal representation of (π, V ) of G2(K), we get a model for the
representation (π, V ) on the space C∞

c (K×,Ql). The action of the group G2(K) on C∞
c (K×,Ql) is denoted

by Kπψ; by definition the restriction of Kπψ to P2(K) is isomorphic to Jψ. The operator Kπψ(w) completely

describes the action of G2(K) on C∞
c (K×,Ql), where

w =

(
0 1
−1 0

)
.

Here, we follow the exposition in [BH06, Section 37.3]. Let χ be a smooth character of K× and let k be
an integer. Define a function ξ{χ, k} in C∞

c (K×,Ql) by setting ξ{χ, k}(x) = χ(x), for νK(x) = k and zero
otherwise. Recall that νK is a discrete valuation on K×. Then we have :

Kπψ(w)ξ{χ, k} = ϵ(χ−1π, ψ)ξ{χ−1ϖπ,−n(χ−1π, ψ)− k}, (2.3)

where ϖπ is the central character of π. Here ϵ(π, ψ) is the Godement–Jacquet local ϵ-factor associated with
a cuspidal representation π and some additive character ψ of F .
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3. Review of Local Constants and Weil-Deligne representations

3.1. Keeping the notation as in Section 2, we briefly discuss about the Weil group and its Weil-Deligne
representations. For a reference, see [BH06, Chapter 7] and [Del73, Chapter 4].

We choose a separable algebraic closure K of K. Let ΩK be the absolute Galois group Gal(K/K) and Let
IK be the inertia subgroup of ΩK . Let WK denote the Weil group of K. Fix a geometric Frobenius element
Frob in WK . Then we have

WK = IK ⋊ FrobZ.

There is a natural Krull topology on the absolute Galois group ΩK and the inertia group IK , as a subgroup
of ΩK , is equipped with the subspace topology. Let the fundamental system of neighbourhoods of the Weil
group WK be such that each neighbourhood of the identity WK contains an open subgroup of IK . Then
under this topology, the Weil group WK becomes a locally compact and totally disconnected group. If K1/K
is a finite extension with K1 ⊆ K, then the Weil group WK1

is considered as a subgroup of WK .

An R-representation ρ of WK is called unramified if ρ is trivial on IK . Let ν be the unramified character
of WK which satisfies ν(Frob) = q−1

K . We now define semisimple Weil-Deligne representations of WK .

3.2. Semisimple Weil-Deligne representation. A Weil-Deligne representation of WK is a pair (ρ, U),
where ρ is a finite dimensional R-representation of WK and U is a nilpotent endomorphism of the vector
space underlying ρ and intertwining the actions of νρ and ρ. A Weil-Deligne representation (ρ, U) of WK

is called semisimple if ρ is semisimple as a representation of WK . Note that any semisimple representation
ρ of WK is considered as a semisimple Weil-Deligne representation of the form (ρ, 0). For two Weil-Deligne
representations (ρ, U) and (ρ′, U ′) of WK , let

HomD((ρ, U), (ρ′, U ′)) = {f ∈ HomWK
(ρ, ρ′) : f ◦ U = U ′ ◦ f},

We say that (ρ, U) and (ρ′, U ′) are isomorphic if there exists a map f ∈ HomD((ρ, U), (ρ′, U ′)) such that f
is bijective. Let Gnss(K) be the set of all n-dimensional semisimple Weil-Deligne representations of the Weil
group WK .

3.3. Local Constants of Weil-Deligne representation. Keep the notations as in section (3.1) and (3.2).
In this subsection, we consider the local constants for l-adic Weil-Deligne representations of WK .

3.3.1. L-factors. Let (ρ, U) be an l-adic semisimple Weil-Deligne representation of WK . Then the L-factor
corresponding to (ρ, U) is the following rational function in X:

L(X, (ρ, U)) = det((id−Xρ(Frob))|ker(U)IK )−1.

3.3.2. Local ϵ-factors and γ-factors. Let ψK : K → Q×
l be a non-trivial additive character and choose a self

dual additive Haar measure on K with respect to ψK . Let ρ be an l-adic representation of WK . The epsilon
factor ϵ(X, ρ, ψK) of ρ, relative to ψK is defined in [Del73]. Let K ′/K be a finite extension inside K. Let
ψK′ denotes the character of K ′, where ψK′ = ψK ◦ TrK′/K . Then the epsilon factor satisfies the following
properties :

(1) If ρ1 and ρ2 are two l-adic representations of WK , then

ϵ(X, ρ1 ⊕ ρ2, ψK) = ϵ(X, ρ1, ψK)ϵ(X, ρ2, ψK).

(2) ρ is an l-adic representation of WK′ , then

ϵ
(
X, indWK

WK′ (ρ), ψK
)

ϵ(X, ρ, ψK′)
=

{
ϵ
(
X, indWK

WK′ (1K′), ψK
)

ϵ(X, 1K′ , ψK′)

}dim(ρ)

, (3.1)

where 1K′ denotes the trivial character of WK .
(3) If ρ is an l-adic representation of WK , then

ϵ
(
X, ρ, ψK

)
ϵ
(
q−1
K X−1, ρ∨, ψK

)
= det

(
ρ(−1)

)
, (3.2)

where ρ∨ denotes the dual of the representation ρ.
(4) For an l-adic representation ρ of WK , there exists an integer n(ρ, ψK) for which

ϵ(X, ρ, ψK) = (q
1
2

KX)n(ρ,ψK)ϵ(ρ, ψK).
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Now for an l-adic semisimple Weil-Deligne representation (ρ, U), the ϵ-factor is defined as

ϵ
(
X, (ρ, U), ψK

)
= ϵ(X, ρ, ψK)

L(q−1
K X−1, ρ∨)

L(X, ρ)

L(X, (ρ, U))

L(q−1
K X−1, (ρ, U)∨)

,

where (ρ, U)∨ = (ρ∨,−U∨). Set

γ(X, (ρ, U), ψK) = ϵ(X, (ρ, U), ψK)
L(X, (ρ, U))

L(q−1
K X−1, (ρ, U)∨)

.

The element γ(X, (ρ, U), ψK) is called the γ-factor of the Weil-Deligne representation (ρ, U).

Now we state a result [KM21, Proposition 5.11] which concerns the fact that the γ-factors are compatible
with reduction modulo l. For P ∈ Zl[X], we denote by rl(P ) ∈ Fl[X] the polynomial obtained by reduction
mod-l to the coefficients of P . For Q ∈ Zl[X], such that rl(Q) ̸= 0, we set rl(P/Q) = rl(P )/rl(Q).

Proposition 3.1. Let ρ be an integral l-adic semisimple representation of WK . Then

rl
(
γ(X, ρ, ψK)

)
= γ

(
X, rl(ρ), ψK

)
,

where ψK is the reduction mod-l of ψK .

We end this subsection with a lemma which will be needed later in the proof of Theorem (1.1).

Lemma 3.2. Let E/F be a cyclic Galois extension of prime degree l and assume l ̸= 2. Let ρ be an l-adic
representation of WE of even dimension. Then

ϵ(X, ρ, ψE) = ϵ
(
X, indWF

WE
(ρ), ψF

)
.

Proof. Let CE/F (ψF ) =
ϵ
(
X, indWF

WE
(1E), ψF

)
ϵ(X, 1E , ψE)

, where 1E denotes the trivial character ofWE . Then CE/F (ψF )

is independent of X (see [BH06, Corollary 30.4, Chapter 7]). Using the equality (3.1), we get

ϵ
(
X, indWF

WE
(ρ), ψF

)
ϵ(X, ρ, ψE)

= (CE/F
(
ψF )

)
dimρ.

In view of the functional equation (3.2), we have

CE/F (ψF )2 = ξE/F (−1),

where ξE/F = det
(
indWF

WE
(1E)

)
, a quadratic character of WF . Since ξlE/F = 1 and l ̸= 2, we get that

ξE/F = 1F , the trivial character of WF . Hence the lemma. □

3.4. Local constants of p-adic representations. Following the notations as in Section (2.7), we now
define the L-factors and γ-factors for irreducible R-representations of Gn(K). For details, see [KM17]. Let π
be an R-representation of Whittaker type of Gn(K) and let π′ be an R-representation of Whittaker type of

Gn−1(K). Let W ∈ W(π, ψK) and W ′ ∈ W(π′, ψ−1
K ). The function W

(
g 0
0 1

)
W ′(g) is compactly supported

on Y rK [KM17, Proposition 3.3]. Then the following integral

cKr (W,W ′) =

∫
Y r
K

W

(
g 0
0 1

)
W ′(g) dg,

is well defined for all r ∈ Z, and vanishes for r << 0. In this paper, we deal with base change where two
different p-adic fields are involved. So to avoid confusion, we use the notation cKr (W,W ′) instead of the
notation cr(W,W

′) used in [KM17, Proposition 3.3] for these integrals on Y rK . Now consider the functions

W̃ and W̃ ′, defined as

W̃ (x) =W
(
wn(x

t)−1
)

and
W̃ ′(g) =W ′(wn−1(g

t)−1
)
,

for all x ∈ Gn(K), g ∈ Gn−1(K). Then making change of variables, we have the following relation:

cKr (W̃ , W̃ ′) = cK−r
(
π(wn)W,π

′(wn−1)W
′). (3.3)
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Let I(X,W,W ′) be the following power series:

I(X,W,W ′) =
∑
r∈Z

cKk (W,W ′)q
r/2
K Xr ∈ R((X)). (3.4)

Note that I(X,W,W ′) is a rational function in X (see [KM17, Theorem 3.5]).

3.4.1. L -factors. Let π and π′ be two R-representations of Whittaker type of Gn(K) and Gn−1(K) respec-
tively. Then the R-submodule spanned by I(X,W,W ′) asW varies in W(π, ψK) andW ′ varies in W(π′, ψ−1

K ),
is a fractional ideal of R[X,X−1] and it has a unique generator which is an Euler factor denoted by L(X,π, π′).
The generator L(X,π.π′) called the L-factor associated to π, π′ and ψ.

Remark 3.3. If π and π′ are l-adic representations of Whittaker type of Gn(K) and Gn−1(K) respectively,
then 1/L(X,π, π′) ∈ Zl[X].

We conclude this section with a theorem [KM17, Theorem 4.3,] which describes L-factors of cuspidal
representations.

Theorem 3.4. Let π1 and π2 be two cuspidal R-representations of Gn(K) and Gm(K) respectively. Then
L(X,π1, π2) is equal to 1, except in the following case : π1 is banal in the sense of [MS14] and π2 ≃ χπ∨

1 for
some unramified character χ of K×.

In the proof of Theorem(1.1), we only consider the case when m = n − 1, and by the above theorem the
L-factor L(X,π1, π2) associated with the cuspidal R-representations π1 and π2 is equal to 1.

3.4.2. Functional Equations and Local γ-factors. Let π and π′ be two R-representations of Whittaker type
of Gn(K) and Gn−1(K) respectively. Then there is an invertible element ϵ(X,π, π′, ψK) in R[X,X−1] such
that for all W ∈ W(π, ψK), W ′ ∈ W(π′, ψ−1

K ), we have the following functional equation :

I(q−1
K X−1, W̃ , W̃ ′)

L(q−1
K X−1, π̃, π̃′)

= ωπ′(−1)n−2ϵ(X,π, π′, ψK)
I(X,W,W ′)

L(X,π, π′)
,

where W̃ is defined as in (3.4) and ωπ′ denotes the central character of the representation π′. We call
ϵ(X,π, π′, ψK) the local ϵ-factor associated to π, π′ and ψK . Moreover, if π and π′ be l-adic representations
of Whittaker type of Gn(K) and Gn−1(K) respectively, then the factor ϵ(X,π, π′, ψK) is of the form cXk for
a unit c ∈ Zl. In particular, there exists an integer n(π, π′, ψK) such that

ϵ(X,π, π′, ψK) = (q
1
2

KX)n(π,π
′,ψK)ϵ(π, π′, ψK). (3.5)

Now the local γ-factor associated with π, π′ and ψ is defined as:

γ(X,π, π′, ψK) = ϵ(X,π, π′, ψK)
L(q−1

K X−1, π̃, π̃′)

L(X,π, π′)
.

3.4.3. Compatibility with reduction modulo l. Let τ and τ ′ be two l-modular representations of Whittaker
type of Gn(K) and Gn−1(K) respectively. Let π and π′ be the respective Whittaker lifts of τ and τ ′. Then

L(X, τ, τ ′)|rl
(
L(X,π, π′)

)
and

rl
(
(γ(X,π, π′, ψK)

)
= γ(X, τ, τ ′, ψK).

For details, see [KM17, Section 3.3].

3.4.4. Generic part of mod-l reduction. Let π be an integral l-adic generic representation of Gn(K). The
mod-l-reduction of π, denoted by rl(π), has a unique generic component and it is denoted by Jl(π) (see
[Vig01, Section 1.8.4]). Let σ be an l-adic generic representation of Gn−1(K). Now, the functional equation
for the pair (Jl(π), Jl(σ)) gives

I(q−1
K X−1, W̃ , W̃ ′) = ϖσ(−1)n−2γ(X, Jl(π), Jl(σ), ψK)I(X,W,W ′),
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for all W ∈ W(Jl(π), ψK) and W ′ ∈ W(Jl(σ), ψ
−1

K ). Let us consider the following commutative diagram:

W0(π, ψK)

ResPn(K)

��

Λπ // IndGn(K)
Nn(K)ΘK

ResPn(K)

��
K0(π, ψK)

λπ

// IndPn(K)
Nn(K)ΘK

Note that the restriction to Pn(K) map on W 0(π, ψK) is an isomorphism. Here Λπ and λπ are the pointwise
mod-l reduction maps. Since K0(ψK) is contained in K0(π, ψK) and λπ maps K0(ψK) onto K(ψK), the
Pn(K)-equivariant map λπ is non-zero. It then follows from commutativity of the above diagram that Λπ is
non-zero. Since Jl(π) is the unique generic subquotient of rl(π), the image of Λπ is equal to W(Jl(π), ψK).
Similarly, the image of Λσ is W(J(σ), ψK). Let U (resp. U ′) be an element of W0(π, ψK) (resp. W0(σ, ψK))
such that Λπ(U) = W (resp. Λτ (U

′) = W ′). From the functional equation for the pair (π, σ), we get the
following relation

I(q−1
K X−1, Ũ , Ũ ′) = ϖσ(−1)n−2γ(X,π, σ, ψK)I(X,U,U ′).

After reducing the above equality modulo-l, we have

I(q−1
K X−1, W̃ , W̃ ′) = ϖσ(−1)n−2rl(γ(X,π, σ, ψK))I(X,W,W ′),

Thus, we get that

rl(γ(X,π, σ, ψK)) = γ(X, Jl(π), Jl(σ), ψK). (3.6)

4. Local Langlands Correspondence

4.1. The l-adic local Langlands correspondence. In this subsection we recall the l-adic local Langlands
correspondence. Keep the notation as in section (2). Let ψK be a non-trivial additive character of K. Recall
that local Langlands correspondence over Ql is the bijection

ΠK : Irr
(
GLn(K),Ql

)
−→ Gnss(K)

such that

γ(X,σ × σ′, ψK) = γ(X,ΠK(σ)⊗ΠK(σ′), ψK)

and

L(X,σ × σ′) = L(X,ΠK(σ)⊗ΠK(σ′)),

for all σ ∈ Irr(Gn(K),Ql), σ′ ∈ Irr(Gm(K),Ql). Moreover, the set of all cuspidal l-adic representations of
GLn(K) is mapped onto the set n-dimensional irreducible l-adic representations of the Weyl group WK via
the bijection ΠK (see [HT01], [Hen00] or [Sch13]). Note that the classical Local langlands correspondence
is a bijection between Irr(GLn(K),C) and the isomorphism classes of n-dimensional, complex semisimple
Weil–Deligne representations. To get a correspondence over Ql, one twists the original correspondence by
the character ν(1−n)/2. For details see [Clo90, Conjecture 4.4, Section 4.2], [Hen01, Section 7] and for n = 2
see [BH06, Theorem 35.1].

4.2. Local base Change for the extension E/F . Now we recall local base change for a cyclic extension
of a p-adic field. The base change operation on irreducible smooth representations of GLn(F ) over complex
vector spaces is characterised by certain character identities (see [AC89, Chapter 3]). Let us recall the
relation between l-adic local Langlands correspondence and local base change for GLn. Let πF be an l-adic
irreducible smooth representation of GLn(F ). Let (ρF , U) be a semisimple Weil-Deligne representation such
that ΠF (πF ) = ρF , where ΠF is the l-adic local Langlands correspondence as described in the previous
section. Let πE be the l-adic irreducible representation of GLn(E) such that

ResWE

(
ΠF (πF )

)
≃ ΠE(πE).

The representation πE is the base change of πF . Note that in this case πE ≃ πγE , for all γ ∈ Γ.
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4.2.1. Base change for L(∆). Let k be a positive integer. Let ∆ = {τF , τF νF , ..., τF νk−1
F } be a segment, where

τF is an l-adic cuspidal representation of Gm(F ). Consider the generic representation L(∆) of Gkm(F ). Then

ΠF
(
L(∆)

)
= ΠF (τF )⊗ SpF (k),

where SpF (k) is the semisimple Weil-Deligne representation of WF , defined as in [BH06, Section 31, Example
31.1]. If l does not divide m, then there exists a cuspidal representation τE of Gm(E) such that τE is a base
change of τF that is,

ResWE

(
ΠF (τF )

)
= ΠE(τE).

Then we have

ResWE

(
ΠF (L(∆))

)
= ΠE(τE)⊗ SpE(k) = ΠE

(
L(D)

)
,

where D is the segment {τE , τEνE , ..., τEνk−1
E }. Hence it follows that the generic representation L(D) of

Gkm(E) is a base change of L(∆).

5. Tate Cohomology

In this section, we recall Tate cohomology groups and some useful results on Γ- equivariant l-sheaves of
Zl-modules on an l-space X equipped with an action of Γ. For details, see [TV16].

5.1. Fix a generator γ of Γ. Let M ba a Zl[Γ]-module. Let Tγ be the automorphism of M defined by:

Tγ(m) = γ.m, for γ ∈ Γ,m ∈M .

Let Nγ = id+Tγ+Tγ2 + ....+Tγl−1 be the norm operator. The Tate cohomology groups Ĥ0(M) and Ĥ1(M)
are defined as :

Ĥ0(M) =
ker(id−Tγ)
Im(Nγ)

, Ĥ1(M) =
ker(Nγ)

Im(id−Tγ)
.

5.2. Tate Cohomology of sheaves on l-spaces. Let X be an l-space with an action of a finite group ⟨γ⟩ of
order l. Let F be an l-sheaf of Fl or Zl -modules on X. Write Γc(X;F) for the space of compactly supported
sections of F . In particular, if F is the constant sheaf with stalk Fl or Zl, then Γc(X;F) = C∞

c (X;Fl) or
C∞
c (X;Zl). The assignment F 7→ Γc(X;F) is a covariant exact functor. If F is γ-equivariant, then γ can be

regarded as a map of sheaves F|Xγ → F|Xγ and the Tate cohomology is defined as :

Ĥ0(F|Xγ ) := ker(1− γ)/Im(N),

Ĥ1(F|Xγ ) := ker(N)/Im(1− γ).

A compactly supported section of F can be restricted to a compactly supported section of F|Xγ . The
following result is often useful in calculating Tate cohomology groups.

Proposition 5.1 (Treumann-Venkatesh, [TV16]). The restriction map induces an isomorphism of the fol-
lowing spaces:

Ĥi(Γc(X;F) −→ Γc(X
γ ; Ĥi(F)) for i = 0, 1.

5.3. Comparison of integrals of smooth functions. The group Γ = ⟨γ⟩ acts on the space XE =
Gn−1(E)/Nn−1(E) and hence its action on the space C∞

c (XE ,Fl) is given by the following equality:

(γ.ϕ)(x) := ϕ(γ−1x), for all x ∈ XE , and ϕ ∈ C∞
c (XE ,Fl).

Let C∞
c (XE ,Fl)Γ be the space of all Γ-invariant functions in C∞

c (XE ,Fl). We end this section with a
proposition comparing the integrals on the spaces XE and XF .

Proposition 5.2. Let dµE and dµF be Haar measures on XE and XF respectively. Then, there exists a
non-zero scalar c ∈ Fl such that ∫

XE

ϕdµE = c

∫
XF

ϕdµF ,

for all ϕ ∈ C∞
c (XE ,Fl)Γ.
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Proof. Since Nn−1(E) is stable under the action of Γ on Gn−1(E), we have the following long exact sequence
of non-abelian cohomology [Ser, Chapter VII, Appendix]:

0 −→ Nn−1(E)Γ −→ Gn−1(E)Γ −→ XΓ
E −→ H1

(
Γ;Nn−1(E)

)
−→ H1

(
Γ;Gn−1(E)

)
.

Since H1
(
Γ;Nn−1(E)

)
= 0, we get from the above exact sequence that

XΓ
E ≃ XF .

Since XF is closed in XE , we have the following exact sequence of Γ-modules :

0 −→ C∞
c

(
XE \XF ,Fl

)
−→ C∞

c (XE ,Fl) −→ C∞
c (XF ,Fl) −→ 0. (5.1)

Now the action of Γ on XE \ XF is free. Then, there exists a fundamental domain U (see [TV16, Section

3.3]) such that XE \XF =
⊔l−1
i=0 γ

iU , and this implies that

H1
(
Γ, C∞

c (XE \XF ,Fl)
)
= 0. (5.2)

Using (5.1) and (5.2), we get the following exact sequence :

0 −→ C∞
c

(
XE \XF ,Fl

)Γ −→ C∞
c (XE ,Fl)Γ −→ C∞

c (XF ,Fl) −→ 0.

Again the free action of Γ on XE \XF gives a fundamental domain U such that XE \XF =
⊔l−1
i=0 γ

iU , and
we have ∫

XE\XF

ϕdµE = l

l−1∑
i=0

∫
U

ϕdµE = 0,

for all ϕ ∈ C∞
c

(
XE \ XF ,Fl

)Γ
. Therefore the linear functional dµE induces a Gn−1(F )-invariant linear

functional on C∞
c (XF ,Fl) and we have ∫

XE

ϕdµE = c

∫
XF

ϕdµF ,

for some scalar c. Now we will show that c ̸= 0. By [Vig96b, Chapter 1, Section 2.8], we have a surjective
map Ψ : C∞

c (Gn(E),Fl) −→ C∞
c (XE ,Fl), defined by

Ψ(f)(g) :=

∫
Nn(E)

f(ng) dn,

for all f ∈ C∞
c (Gn(E),Fl), where dn is a Haar measure on Nn(E). Then there exists a Γ-invariant compact

open subgroup I ⊆ Gn(E) such that Ψ(1I) ̸= 0, where 1I denotes the characteristic function on I. So the
Haar measure dµE is non-zero on the space C∞

c (XE ,Fl)Γ and this implies that c ̸= 0. Hence the proposition
follows. □

Remark 5.3. Keep the notations and hypothesis in Proposition 5.2. From now, the Haar measures dµE
and dµF on XE and XF respectively, are chosen so as to make c = 1. Then we have∫

XE

ϕdµE =

∫
XF

ϕdµF .

Moreover, if e is the ramification index of the extension E over F , then for all r /∈ {te : t ∈ Z}, we have∫
(Xr

E)Γ
ϕdµF = 0

and for all r ∈ {te : t ∈ Z}, we have ∫
(Xr

E)Γ
ϕdµF =

∫
X

r
e
F

ϕdµF .



14 SABYASACHI DHAR AND SANTOSH NADIMPALLI

5.4. Frobenius Twist. Let G be a locally compact and totally disconnected group. Let (σ, V ) be an l-
modular representation of G. Consider the vector space V (l), where the underlying additive group structure
of V (l) is same as that of V but the scalar action ∗ on V (l) is given by

c ∗ v = c
1
l v, for all c ∈ Fℓ, v ∈ V .

Then the action of G on V induces a representation σ(l) of G on V (l). The representation (σ(l), V (l)) is called
the Frobenius twist of the representation (σ, V ).

We end this subsection with a lemma which will be used in the main result.

Lemma 5.4. Let ψ be a non-trivial l-modular additive character of F and let Θ be the non-degenerate
character of Nn(F ) corresponding to ψ. If (π, Vπ) and (σ, Vσ) are two l-modular generic representations of
Gn(F ) and Gn−1(F ) respectively, then

γ(X,π, σ, ψ)l = γ(X l, π(l), σ(l), ψl).

Proof. Let Wπ be a Whittaker functional on the representation π. Then the composite map

Vπ
Wπ−−→ Fl

x 7→xl

−−−→ Fl,

denoted by Wπ(l) , is a Whittaker functional (with respect to ψl : Nn(F ) → F×
l ) on the representation π(l),

as we have:
Wπ(l)(c.v) =Wπ((c

1
l v))l = cWπ(l)(v)

and
Wπ(l)(π(l)(n)v) = (Θ(n)Wπ(v))

l = Θl(n)Wπ(l)(v),

for all v ∈ Vπ, c ∈ Fl and all n ∈ Nn(F ).

So the Whittaker model W(π(l), ψl) consists of the functions W l
v, where Wv varies in W(π, ψ). Similarly

the Whittaker model W(σ(l), ψl) of σ(l) consists of the functions U lv, where Uv varies in W(σ, ψ). Then by
the Rankin-Selberg functional equation in the subsection (3.4.2), we have∑

r∈Z
cFr (W̃v, Ũv)

lq
−lr/2
F X−lr = ωσ(−1)n−2γ(X,π, σ, ψ)l

∑
r∈Z

cFr (Wv, Uv)
lq
lr/2
F X lr (5.3)

and ∑
r∈Z

cFr (W̃
l
v, Ũ

l
v)q

−r/2
F X−r = ωσ(l)(−1)n−2γ(X,π(l), σ(l), ψl)

∑
r∈Z

cFr (W
l
v, U

l
v)q

r/2
F Xr. (5.4)

Replace X by X l to the equation (5.4), we have∑
r∈Z

cFr (W̃
l
v, Ũ

l
v)q

−r/2
F X−lr = ωσ(l)(−1)n−2γ(X l, π(l), σ(l), ψl)

∑
r∈Z

cFr (W
l
v, U

l
v)q

r/2
F X lr. (5.5)

Then from the equations (5.3) and (5.5), we get

γ(X,π, σ, ψ)l = γ(X l, π(l), σ(l), ψl).

□

6. Tate Cohomology of Whittaker Lattice

Let (π, V ) be a generic integral l-adic smooth representation of Gn(E) such that πγ is isomorphic to π,
for all γ ∈ Γ. Let W (π, ψ) be the Whittaker model of π. For W ∈W (π, ψ), we recall that γ.W is a function
given by

γ.W (g) =W (γ−1(g)),

for all g ∈ Gn(E). Note that γ.W ∈W (π, ψ) (see Lemma 2.4). Thus, we define

Tγ :W (π, ψ) →W (π, ψ)

by setting Tγ(W ) = γ.W , for all W ∈ W (π, ψ). The map Tγ gives an isomorphism between (πγ , V ) and
(π, V ) as we have

Tγ(π(g)Wv)(h) = π(g)Wv(γ
−1(h)) =Wv(γ

−1(h)g)

and
[πγ(g)T (Wv)](h) = T (Wv)(hγ(g)) =Wv(γ

−1(h)g),
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for all g, h ∈ G. Thus, the lattice W 0(π, ψ) has the action of the group Gn(E)⋊ Γ, where γ ∈ Γ acts as Tγ .

6.1. Jacquet-functors and Tate cohomology. We begin with a few elementary results on the compat-
ibility of Jacquet (twisted Jacquet) functors with Tate cohomology. Let (π, V ) be an irreducible smooth
representation of Gn(E) ⋊ Γ and let L be a Gn(E) ⋊ Γ stable lattice in V . Let λ = (n1, n2, . . . , nr) be a
partition of n and let Pλ =MλNλ be a parabolic subgroup of Gn with Nλ its unipotent radical and Mλ is a
standard Levi-subgroup. Let L(Nλ(E)) be the space spanned by the set of vectors

{v − π(n)v : v ∈ L, n ∈ Nλ(E)}.

Note that the space L(Nλ(E)) is stable under the action of Γ.

Lemma 6.1. The image of the natural map Ĥ0(L(Nλ(E)) → Ĥ0(L) is equal to Ĥ0(L)(Nλ(F )).

Proof. Let ϕ be the natural map Ĥ0(L(Nλ(E))) → Ĥ0(L) and let v ∈ Img(ϕ). Let ṽ be a lift of v in
L(Nλ(E))Γ. There exists a compact open subgroup N of Nλ(E) such that∫

N
π(n)ṽdn = 0.

Since Nλ(E) has a filtration of Γ-stable compact open subgroups, we may assume that N is Γ-stable. Now
consider an element u ∈ V ∨ such that u(L) is contained in Zl. Then the matrix coefficient cṽ,u(g) = ⟨π(g)ṽ, u⟩
takes values in Zl, for g ∈ Gn(E). Following the proof of Proposition 5.2, for any choice of Haar measures

dn and dm on Nλ(E) on Nλ(F ) respectively, there exists a scalar c ∈ Z×
l such that∫

N
cṽ,u(n)dn ≡ c

∫
NΓ

cṽ,u(m)dm mod (l).

Thus, we get that ∫
NΓ

π(m)vdm = 0

and the element v belongs to Ĥ0(L)(Nλ(F )). □

Note that the image of L in VNλ(E) is a lattice (see [Dat05, Proposition 1.4]). The image of L in VNλ(E)

is denoted by LNλ(E).

Lemma 6.2. Let L be a Gn(E) ⋊ Γ lattice in an l-adic representation (π, V ) such that Ĥ1(LNλ(E)) = 0,

Ĥ0(L)Nλ(F ) is non-zero and Ĥ0(LNλ(E)) is irreducible. Then, the Mλ(F )-representation Ĥ0(L)Nλ(F ) is

isomorphic to Ĥ0(LNλ(E)).

Proof. Let L be a Gn(E) ⋊ Γ-stable lattice in V . The long exact sequence of Tate cohomology groups
associated with the exact sequence

0 → L(Nλ(E)) → L → LNλ(E) → 0,

is equal to:

0 → Ĥ0(L(Nλ(E))
ϕ−→ Ĥ0(L) → Ĥ0(LNλ(E)) → Ĥ1(L(Nλ(E))) → Ĥ1(L) → 0.

Using Lemma 6.1, we get that Ĥ0(L)Nλ(F ) is equal to Ĥ
0(LNλ(E)). □

Using similar ideas we can prove that zeroth Tate cohomology of a generic representation has a unique
generic subquotient.

Proposition 6.3. Let πE be an integral l-adic generic representation of Gn(E) which is stable under the
action of Gal(E/F ). Let W0(πE , ψE) be the Whittaker lattice of πE (see 2.7.6). There exists a unique generic

subquotient of the Gn(F ) representation Ĥ
0(W0(πE , ψE)).



16 SABYASACHI DHAR AND SANTOSH NADIMPALLI

Proof. Let L be the lattice W0(πE , ψE). Let ψ be an additive character of F . Let ΘE and ΘF be the non-
degenerate characters of Nn(E) and Nn(F ) respectively. Let L(Nn(E),ΘE) be the Zl span of the vectors of
the form ΘE(n)v − π(n)v, for all v ∈ L and n ∈ Nn(E). We have the following exact sequence:

0 → L(Nn(E),ΘE) → L → LNn(E),ΘE
→ 0.

Note that LNn(E),ΘE
is a free Zl module of rank 1 and Ĥ1(LNn(E),ΘE

) is trivial. The long exact sequence in
the Tate cohomology gives us

0 → Ĥ0(L(Nn(E),ΘE))
f−→ Ĥ0(L) g−→ Ĥ0(LNn(E),ΘE

) → Ĥ1(L(Nn(E),ΘE)) → Ĥ1(L) → 0.

Using arguments of Lemma 6.2, the image of the map f is equal to Ĥ0(L)(Nn(F ),Θ
l

F ). The Tate cohomology

of the integral Kirillov model Ĥ0(K0(πE , ψE)) contains K(ψ
l

F ) as Pn(F ) subrepresentation (see 6.4.1). Thus,

the twisted Jacquet module Ĥ0(L)
Nn(F ),Θ

l
F
is non-trivial. Hence, the map g induces the isomorphism:

Ĥ0(L)
Nn(F ),Θ

l
F
≃ Ĥ0(LNn(E),ΘE

).

This proves the proposition. □

Remark 6.4. The above lemmas will be used to compute the Tate cohomology of the base change of Z(∆),
the Zelevinsky sub-representation. The Jacquet functor of Z(∆) with respect to the parabolic subgroup
of type (n/k, n/k, . . . , n/k), where k is the length of the segment ∆, is a cuspidal representation and the
hypothesis in Lemma 6.2 are applicable. The precise definitions will be recalled in the next section.

6.2. The GL2 case.

Theorem 6.5. Let F be a finite extension of Qp, and let E be a finite Galois extension of F with [E : F ] = l.
Assume that l and p are distinct odd primes. Let πF be an integral l-adic cuspidal representations of G2(F )
and let πE be the representation of G2(E) such that πE is the base change of πF . Then

Ĥ0(πE) ≃ rl(πF )
(l).

Proof. Fix a non-trivial additive character ψ of F . Let ψE and ψF be defined as in subsection (2.7.7). Let(
KπE

ψE
, C∞

c (E×,Ql)
)
be a Kirillov model of the representation πE . By [Vig96a], the lattice C∞

c (E×,Zl) is

stable under the action of KπE

ψE
(w). Recall that the group Γ acts on C∞

c (E×,Zl). We denote by Ĥ0(πE) the

cohomology group Ĥ0
(
C∞
c (E×,Zl)

)
. Then using Proposition 5.1, we have

Ĥ0(πE) ≃ C∞
c (F×,Fl).

The space Ĥ0(πE) is isomorphic to ind
P2(F )
N2(F )(ψ

l

F ) as a representation of P2(F ), where ψF is the mod-l

reduction of ψF ; and the induced action of the operator KπE

ψE
(w) on Ĥ0(πE) is denoted by KπE

ψE
(w). The

theorem now follows from the following claim.

Claim 1. KπE

ψE
(w)(f) = Krl(πF )(l)

ψ
l
F

(w)(f), for all f ∈ C∞
c (F×,Fl).

Now for a function f ∈ C∞
c (F×,Fl), any covering of supp(f) by open subsets of F× has a finite refinement

of pairwise disjoint open compact subgroups of F×. So we may assume that supp(f) ⊆ ϖrxU1
F , where

r ∈ Z, ϖ is an uniformizer of F and x is a unit in (oF /pF )
× embedded in F×. Then there exists an

element u ∈ P2(F ) such that supp(u.f) ⊆ U1
F . Therefore it is sufficient to prove the claim for functions

f ∈ C∞
c (F×,Fl) with supp(f) ⊆ U1

F , and we have

f = cχF

∑
χF∈Û1

F

ξ{χF , 0},

where cχF
∈ Fl and Û1

F is the set of smooth characters of

F× = ⟨ϖF ⟩ × k×F × U1
F
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which are trivial on k×F and ϖF . We now prove the claim for the function ξ{χF , 0} for χF ∈ Û1
F . There exists

a character χ0 ∈ Û1
F such that χl0 = χF . Let χ̃0 be the l-adic lift of the character χ0. Define a character χ̃E

of E× by,

χ̃E(x) = χ̃0(NrE/F (x)),

for x ∈ E×. Here, NrE/F : E× → F× denotes the norm map. Note that χ̃E extends the character χF . We
have the following relations :

KπE

ψE
(w)

(
ξ{χF , 0}

)
= rl

(
ϵ(χ̃−1

E πE , ψE)
)
ξ

{
χF ,

− n(χ̃−1
E πE , ψE)

e

}
(6.1)

and

Krl(πF )(l)

ψ
l
F

(w)
(
ξ{χF , 0}

)
= ϵ(χ−1

F rl(πF )
(l), ψ

l

F )ξ
{
χF ,−n(χ−1

F rl(πF )
(l), ψ

l

F )
}
, (6.2)

where e denotes the ramification index of the extension E/F . Next, we aim to prove the following identity:

rl
(
ϵ(X, χ̃−1

E πE , ψE)
)
= ϵ(X,χ−1

F rl(πF )
(l), ψ

l

F ).

It follows from Theorem 3.4 that the ϵ-factor is same as the γ-factor in both l-adic and mod-l cases. Now,
using the identity in [AC89, Proposition 6.9], we get

ϵ(X, χ̃−1
E πE , ψE) =

∏
η

ϵ(X, χ̃−1
0 πF ⊗ η, ψF ),

where η runs over all the characters of the group F×/NrE/F (E
×), which is isomorphic to Gal(E/F ) via local

class field theory. Taking mod-l reduction and using its compatibility with gamma factors, we get

rl
(
ϵ(X, χ̃−1

E πE , ψE)
)
= ϵ(X,χ−1

0 rl(πF ), ψF )
l.

Using Lemma 5.4, we have

rl
(
ϵ(X, χ̃−1

E πE , ψE)
)
= ϵ(X l, χ−1

F rl(πF )
(l), ψ

l

F ).

Now, using the identity (3.5) and comparing the degree of X from above relation, we get

n(χ̃−1
E πE , ψE)

e
= n(χ−1

F rl(πF )
(l), ψ

l

F )

and

rl
(
ϵ(χ̃−1

E πE , ψF )
)
= ϵ

(
χ−1
F rl(πF )

(l), ψ
l

F

)
.

Thus it follows from (6.1) and (6.2) that

KπE

ψE
(w)

(
ξ{χF , 0}

)
= Krl(πF )(l)

ψ
l
F

(w)
(
ξ{χF , 0}

)
.

Hence we prove the claim, and the theorem follows. □

6.3. Our main result uses the following lemma which is the analogue of completeness of Whittaker models
in the complex case.

Lemma 6.6. Assume that l does not divide |Gn(kK)| and let ψK be the mod-l reduction of ψK . Let ΘK be

the non-degenerate character of Nn(K) associated with ψK (see Section 2.7). Let ϕ ∈ ind
Gn(K)
Nn(K)(ΘK). If∫

Nn(K)\Gn(K)

ϕ(t)W (t) dt = 0,

for all W ∈ W(σ, ψ
−1

K ) and for all generic representations σ of Gn(K), then ϕ = 0.

Proof. We will prove the contrapositive. Suppose ϕ is non-zero. Let RW(Fl)
(Gn(K)) be the category of

smooth W(Fl)[Gn(K)]-modules, and let Zn be the Bernstein center of the category of smooth W(Fl)[Gn(K)]-

modules. Let Mn be the W(Fl)[Gn(K)]-module ind
Gn(K)
Nn(K)(ψK). Recall that for any primitive idempotent e in

Zn, the space eMn is a smooth co-Whittaker eZn[Gn(K)]-module and eMn ⊗W(Fl)
Fl is a generic l-modular
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representation of Gn(K) (see [Hel16b, Theorem 6.3]). According to [Mos21, Corollary 4.3], there exists a

primitive idempotent e′ of Zn and an element U in W(e′Mn, ψ
−1

K ) such that the integral∫
Nn(K)\Gn(K)

ϕ(t)⊗ U(t) dt (6.3)

is non-zero in Fl ⊗W(Fl)
e′Zn. As described in [Hel16a], the primitive idempotent e′ corresponds to an

inertial equivalence class of pairs (M,π), where M is a Levi subgroup of Gn(K) and π is a supercuspidal
Fl-representation of M .

For the inertial equivalence class [M,π], consider the subcategory RW(Fl)
(Gn(K))[M,π] consisting of all

objects Π in RW(Fl)
(Gn(K)) such that the irreducible sub-quotients of Π have mod-l inertial supercuspidal

support [M,π]. Let A[M,π] denote the Bernstein center of the subcategory RW(Fl)
(Gn(K))[M,π]. Since l is

banal, [Hel16a, Example 13.9] shows that

A[M,π] = C[M,π],

where C[M,π] is an W(Fl)-subalgebra of A[M,π] as defined in [Hel16a, Theorem 12.5]. There is an isomorphism

of C[M,π] ⊗W(Fl)
Fl with the reduced quotient of A[M,π] ⊗W(Fl)

Fl ([Hel16a, Corollary 12.13]), and hence we

get that the Fl-algebra e′Zn ⊗W(Fl)
Fl is reduced. Therefore the above integral (6.3) is not nilpotent in

e′Zn ⊗W(Fl)
Fl. This implies that there is a map e′Zn ⊗W(Fl)

Fl → Fl such that the image of the integral

(6.3), which is equal to ∫
Nn(K)\Gn(K)

ϕ(t)W0(t) dt

for some W0 ∈ W
(
e′Mn ⊗W(Fl)

Fl, ψ−1
K

)
, is non-zero in Fl. Hence proved. □

6.4. The general case. We will now prove the main theorem of our article.

Theorem 6.7. Let F be a finite extension of Qp, and let E be a finite Galois extension of F with [E : F ] = l,
where p and l are distinct primes such that l does not divide |Gn−1(kF )|. Let πF be an integral l-adic generic
representation of Gn(F ) with Jl(πF ), the unique generic component of the mod-l reduction of πF . Let πE be
the base change of πF . Let W0(πE , ψE) be the lattice of Zl-valued functions in the Whittaker model of πE with
respect to the additive character ψE. Then the representation Jl(πF )

(l) is the unique generic sub-quotient of

Ĥ0(W0(πE , ψE)).

Proof. We begin with a summary of the proof. We prove the above theorem using induction on the integer
n. The proof is divided into three parts. In the first part, we isolate a subspace M(πF , ψF ) of the Tate
cohomology of the integral Kirillov model of πE which will eventually give Jl(πF )

(l) as a quotient. In
the second part, we will set up comparison of Zeta integrals on homogeneous spaces of F with those on
homogeneous spaces of E. In the third part we show that M(πF , ψF ) is stable under the action of Gn(F ).
At the end of the third part, we get a natural onto map from M(πF , ψF ) to the mod-l Kirillov model

K(Jl(πF )
(l), ψ

l

F ) as Gn(F ) representations.

6.4.1. Notations on Whittaker and Kirillov models are defined in subsections 2.7.1 and 2.8. The Whit-
taker model W(πE , ψE) of πE has a natural Gn(E)-stable lattice W0(πE , ψE) consisting of Zl valued func-
tions in W(πE , ψE). The restriction map W 7−→ ResPn(E)(W ) is an isomorphism between W0(πE , ψE) and

K0(πE , ψE)–the lattice of integral functions in the Kirillov model K(πE , ψE) (see [MM22, Corollary 4.3]).

The Tate cohomology Ĥ0(K0(ψE)) of the lattice K0(ψE) consisting of Zl-valued functions in the compact in-

duction ind
Gn(E)
Nn(E) ΘE , denoted by K(ψE), is naturally isomorphic to the space K(ψ

l

F ). Let In be the following

natural map:

In : Ĥ0(K0(ψE)) → Ĥ0(K0(πE , ψE)).

Let Φn : K0(πE , ψE)
Γ → Ind

Pn(F )
Nn(F )Θ

l

F be the composition of the restriction to Pn(F ) map and the (pointwise)

mod-l reduction map. Note that the map Φn factorises through

Φn : Ĥ0(K0(πE , ψE)) → Ind
Pn(F )
Nn(F )Θ

l

F .
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Since the map Φn ◦ In is an isomorphism onto the space K(ψ
l

F ), we get that the image of Φn contains

K(ψ
l

F ). Let M(πF , ψF ) be the space Φ−1
n (K(Jl(πF )

(l), ψ
l

F )). The space M(πF , ψF ) is non-zero Pn(F )

sub-representation of Ĥ0(K0(πE , ψE)), and the map

Φn : M(πF , ψF ) → K(Jl(πF )
(l), ψ

l

F )

is non-zero. Then using induction on the integer n, we will show that the space M(πF , ψF ) is stable under
Gn(F ) and the map Φn is Gn(F )-equivariant map.

6.4.2. Let πE(wn) be the induced action of πE(wn) on Ĥ
0(K0(πE , ψE)). Let V be an element in M(πF , ψF ).

Then there exists W ∈ W0(πE , ψE)
Γ such that W is mapped to V under the map

W0(πE , ψE)
Γ −→ K0(πE , ψE)

Γ −→ Ĥ0
(
K0(πE , ψE)

)
. (6.4)

Let σF be an arbitrary l-modular generic representation of Gn−1(F ), and let σF be its l-adic lift. In this
case, the generic mod-l representation Jl(σF ) is equal to σF . Let σE be an l-adic generic representation of
Gn−1(E) obtained as a base change of σF . Note that the map

Φ̃n−1 : Ĥ0(W0(σE , ψ
−1
E )) → ind

Gn−1(F )
Nn−1(F )Θ

−l
F

is non-zero. Here, Φ̃n−1 is the (pointwise) mod-l reduction followed by restriction to Gn−1(F ) map on the

space of integral functions in Ind
Gn−1(E)
Nn−1(E)ψE . Assuming the induction hypothesis for n− 1 and using the fact

that the representation Ĥ0(W0(σE , ψ
−1
E )) has a unique generic subquotient (Proposition 6.3), the image of

Φ̃n−1 is equal to W (σ
(l)
F , ψ

−l
F ). Thus, for any W ′ ∈ W (σ

(l)
F , ψ

−l
F ), there exists an element S ∈ W0(σE , ψ

−1
E )Γ

such that Φ̃n−1(S) =W ′ and

Φ̃n−1

(
σE(wn−1)S

)
= σ

(l)
F (wn−1)W

′.

Now the functional equation in (3.4.2) gives the following relation:∑
r∈Z

cEr
(
W̃ , S̃

)
q
− r

2 f

F X−fr = ωσE
(−1)n−2γ(X,πE , σE , ψE)

∑
r∈Z

cEr (W,S)q
r
2 f

F Xfr, (6.5)

where f is the residue degree of the extension E/F . Note that ωσE
(−1) = ωσF

(−1) as l is an odd prime.
Applying Proposition 5.2, we get that∫

XE

rl(W )

(
g 0
0 1

)
rl(S)(g)dg =

∫
XF

rl(W )

(
g 0
0 1

)
rl(S)(g)dg

and ∫
XE

rl(W̃ )

(
g 0
0 1

)
rl(S̃)(g)dg =

∫
XF

rl(W̃ )

(
g 0
0 1

)
rl(S̃)(g)dg,

where rl denotes the reduction mod-l. Using the above equalities and Remark 5.3, the functional equation
(6.5) after reduction mod-l, becomes∑

r∈Z
cFr

(
rl(W̃ ), rl(S̃)

)
q
− r

2

F X−efr = ωσF
(−1)n−2rl

(
γ(X,πE , σE , ψE)

)∑
r∈Z

cFr
(
rl(W ), rl(S)

)
q

r
2

FX
efr.

Using the modification as in (3.3), the above equality becomes∑
r∈Z

cF−r
(
πE(wn)rl(W ), σ

(l)
F (wn−1)W

′)q− r
2

F X−lr = ωσF
(−1)n−2rl

(
γ(X,πE , σE , ψE)

)∑
r∈Z

cFr
(
W,W ′)q r

2

FX
lr.

(6.6)

6.4.3. For any V ∈ M(πF , ψF ), we show that

Φn(πE(wn)V ) = Jl(πF )
(l)(wn)Φn(V ). (6.7)

Let U be an element of W(Jl(πF )
(l), ψ

l

F ) such that the restriction of U to Pn(F ) maps to the element Φn(V ).
By Lemma 6.6, the assertion (6.7) is equivalent to the following equality:∑
r∈Z

cF−r
(
πE(wn)rl(W ), σ

(l)
F (wn−1)W

′)q−r/2F X−r =
∑
r∈Z

cF−r
(
Jl(πF )

(l)(wn)U, σ
(l)
F (wn−1)W

′)q−r/2F X−r, (6.8)
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for all W ′ ∈ W(σF , ψ
−1
F ) and for all irreducible l-modular generic representations σF of Gn−1(F ). Now

consider an l-modular generic representation σF of Gn−1(F ) and take the l-adic lift of σF , say σF (see
subsection 2.7.5). Note that Jl(σF ) = σF . Let σE be the l-adic generic representation of Gn−1(E) obtained
as a base change of σF . From the functional equation with its modifications as in (3.3), we have∑
r∈Z

cF−r
(
Jl(πF )

(l)(wn)U, σ
(l)
F (wn−1)W

′)q− r
2

F X−lr = ωσF
(−1)n−2γ

(
X l, Jl(πF )

(l), σ
(l)
F , ψ

l

F

)∑
r∈Z

cFr (U,W
′)q

r
2

FX
lr,

where we replace the variable X by X l. Note that the mod-l reduction of the function ResPn(F )W is equal to
ResPn(F )U . Thus, comparing the above functional equation with (6.6), the relation (6.7) is now equivalent
to the following equality:

rl
(
γ(X,πE , σE , ψE)

)
= γ

(
X l, Jl(πF )

(l), σ
(l)
F , ψ

l

F

)
.

Recall that

γ(X,πE , σE , ψE) = ϵ(X,πE , σE , ψE)
L(q−1

E X−1, π̃E , σ̃E)

L(X,πE , σE)
.

Now using the identity in [AC89, Proposition 6.9], we have

L(X,πE , σE) =
∏
η

L(X,πF , σF ⊗ η)

and

ϵ(X,πE , σE , ψE) = CE/F (ψF )n(n−1)
∏
η

ϵ(X,πF , σF ⊗ η, ψF ),

where η runs over all the characters of the group F×/NrE/F (E
×), which is isomorphic to Gal(E/F ) via the

local class field theory. Here, CE/F (ψF ) is the Langlands constant, defined as in the proof of Lemma 3.2 and

CE/F (ψF )2 = 1. Then the above relations implies that

γ(X,πE , σE , ψE) =
∏
η

γ(X,πF , σF ⊗ η, ψF ).

Taking mod-l reduction and using the relation (3.6), we get that

rl
(
γ(X,πE , σE , ψE)

)
= γ(X, Jl(πF ), σF , ψF )

l. (6.9)

Finally, it follows from Lemma 5.4 that

rl
(
γ(X,πE , σE , ψE)

)
= γ(X l, Jl(πF )

(l), σ
(l)
F , ψ

l

F ).

The identity 6.7 shows that space M(πF , ψF ) is stable under the action of Gn(F ) and the map

Φn : M(πF , ψF ) → K(Jl(πF )
(l), ψ

l

F )

is surjective. Using Proposition 6.3, the Gn(F ) representation Ĥ0(W0(πE , ψE)) has a unique generic sub-
quotient, which is necessarily equal to J(πF )

(l). This completes the proof. □

Now we deduce an immediate corollary of Theorem 6.7.

Corollary 6.8. Let F be a finite extension of Qp, and let E be a finite Galois extension of F with [E : F ] = l,
where p and l are distinct primes such that l does not divide |Gn−1(kF )| and the integer n. Let πF be an
integral l-adic cuspidal representation of Gn(F ) and let πE be the base change of πF . Then we have

Ĥ0(πE) ≃ rl(πF )
(l).

Proof. Since l does not divide n, the representation πE is cuspidal. As the lattice K0(πE , ψE) is equal to

K0(ψE), we get that Ĥ0(K0(πE , ψE)) is equal to K(ψ
l

F ). Thus, the action of Gn(F ) on Ĥ
0(K0(πE , ψE)) is

irreducible. The corollary follows from Theorem 6.7. □
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7. Base change for Z(∆)

In this section, we study the Tate cohomology of the base change of the Zelevinsky subrepresentations of
the form Z(∆). In [Zel80], Zelevinsky uses the notation ⟨∆⟩ for Z(∆). In this section, we continue with the
assumptions in Corollary 6.8, i.e., l ̸= p and l does not divide |Gn−1(Fq)| and the integer n. Recall that q is
the cardinality of the residue field of F . We will crucially use the fact that Z(∆) remains irreducible under
the restriction to Pn and it is characterised by this property.

7.1. Keeping the notations as in subsection (2.7.2), let ∆ =
{
σ, σνK , . . . , σν

r−1
K

}
be a segment, where K is

a p-adic field and σ is a cuspidal l-adic representation of Gm(K). We denote by ℓ(∆) the length of ∆, i.e.,
the integer r. The parabolic induction

σ × σνK × · · ·σνr−1
K

admits a unique irreducible subrepresentation, denoted by Z(∆). Moreover, Z(∆) can be characterised as
those irreducible representation of Grm(K) that remain irreducible after restricting to Prm(K), and the
restriction is isomorphic to (Φ+)m−1 ◦Ψ+(Z(∆−)), where ∆− = ∆ \

{
σνr−1

K

}
. We refer to [BZ77, Section 3]

for the definitions of the functors Φ± and Ψ± and for the definition of Z(∆) and its restriction to Pn(K) we
refer to [Zel80, Section 3].

7.2. Let F be a finite extension of Qp, and let E be a finite Galois extension of F of prime degree l with l ̸= p.
Let Γ denote the cyclic Galois group Gal(E/F ) with generator, say γ. Let σF and σE be the integral cuspidal
l-adic representations of Gm(F ) and Gm(E) respectively such that σE is a base change of σF . Consider the
segments

∆F =
{
σF , σF νF , . . . , σF ν

k−1
F

}
∆E =

{
σE , σEνE , . . . , σEν

k−1
E

}
.

Then we have the irreducible l-adic representations Z(∆F ) and Z(∆E) of Gn(F ) and Gn(E) respectively,

where n = km. If we let σ′
F (resp. σ′

E) to be the representation σF ν
k−1
F (resp. σEν

k−1
E ), then we have

ΠF (Z(∆F )) = ΠF (σ
′
F )⊕ΠF (σ

′
F ν

−1
F )⊕ · · · ⊕ΠF (σF )

and
ΠE(Z(∆E)) = ΠE(σ

′
E)⊕ΠE(σ

′
Eν

−1
E )⊕ · · · ⊕ΠF (σE),

where ΠF and ΠE are the local Langlands correspondences defined as in subsection (4.1). This shows that

ResWE

(
ΠF (Z(∆F ))

)
≃ ΠE(Z(∆E)).

Thus the representation Z(∆E) is the base change of Z(∆F ).

7.3. Let L0 be a Gm(E)-invariant lattice in σE , and let Sγ : σE → σγE be an isomorphism with Slγ = id

and Sγ(L0) = L0. Recall that the representation πE = σE × σEνE × · · · × σEν
k−1
E admits a Gn(E)-invariant

lattice, say L′, which is induced via L0. Then L = L′ ∩ Z(∆E) is a Gn(E)-invariant lattice in Z(∆E). Now,
the map Sγ induces an isomorphism Tγ : Z(∆E) → Z(∆E)

γ such that T lγ = id and Tγ stabilizes L. Moreover,
choosing a Gm(E)-invariant, Sγ-stable lattice in σE is equivalent to choosing a Gn(E)-invariant, Tγ-stable
lattice in Z(∆E).

We now recall the mod-l reduction of the representation Z(∆F ). Let us introduce the following notations:

rl(∆F ) =
{
rl(σF ), rl(σF )νF , . . . , rl(σF )ν

k−1
F

}
and

rl(∆F )
(l) =

{
rl(σF )

(l), (rl(σF )νF )
(l), . . . , (rl(σF )ν

k−1
F )(l)

}
,

where rl(σF ) is the mod-l reduction of σF and rl(σF )
(l) is the Frobenius twist of rl(σF ). Then the mod-l

reduction of Z(∆F ) ([MS14, Theorem 9.39]) is given by

rl(Z(∆F )) = Z(rl(∆F )).

This shows, in particular, that rl(Z(∆F )) is irreducible. Moreover, the Frobenius twist of rl(Z(∆F )) equals
Z(rl(∆)(l)). Now we prove a couple of lemmas.

Lemma 7.1. Let L be a lattice in Z(∆E) that is stable under the action of both Gn(E) and Tγ . Then we

have Ĥ1(L) = 0.
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Proof. We prove this claim using induction on ℓ(∆E). If the length of ∆E is 1, then the lemma clearly follows
by [Ron16, Theorem 6]. Recall that

Z(∆E)|Pn(E) ≃ (Φ+)m−1 ◦Ψ+(Z(∆−
E)).

We also have the isomorphism of Pn(E)⋊ Γ-modules

L|Pn(E) ≃ (Φ+)m−1 ◦Ψ+(L−),

where L− is a lattice in Z(∆−
E), stable under the action of Gn−m(E)⋊Γ (see [EH14, Section 3]). When k is 2,

we have ∆E =
{
σE , σEνE

}
and in this case, the representation Z(∆−

E) is equal to σE . Applying Proposition
5.1, we get that

Ĥ1(L) ≃ (Φ+)m−1 ◦Ψ+
(
Ĥ1(L−)

)
. (7.1)

The case k = 2 follows from [Ron16, Theorem 6]. Suppose the result is true for all Z(∆)’s where the length

of ∆ is strictly less than k. Then using 7.1 we get that Ĥ1(L) = 0. □

Lemma 7.2. The semisimplification of Ĥ0(L) is independent of the choice of the lattice L.

Proof. Consider the exact sequence of Zl[Gn(E)⋊ Γ]-modules

0 −→ L l−→ L −→ L/lL −→ 0.

Since Ĥ1(L) = 0 (Lemma (7.1)), the long exact sequence of Tate cohomology gives Ĥ0(L) ≃ Ĥ0(L/lL). Now,
the irreducibility of mod-l reduction of Z(∆E) implies that the semisimplification of Ĥ0(L/lL), equivalent
to that of Ĥ0(L), is independent of the choice of L. □

For any Gn(E) ⋊ Γ-invariant lattice L in Z(∆E), the semisimplification of the l-modular representation

Ĥ0(L) is denoted by Ĥ0(Z(∆E)). We end this section with the following theorem.

Theorem 7.3. Let E/F be a finite Galois extension with [E : F ] = l, where l and p are distinct primes such
that l does not divide n and |Gn−1(Fq)|. Let σF be an integral cuspidal l-adic representation of Gm(F ), and
let σE be an integral l-adic representation of Gm(E) obtained as a base change of σF (Note that σE is also

cuspidal). Let ∆F =
{
σF , σF νF , . . . , σF ν

k−1
F

}
and ∆E =

{
σE , σEνE , . . . , σEν

k−1
E

}
be two segments (Here

n = km). Then we have

Ĥ0(Z(∆E)) ≃ rl(Z(∆F ))
(l).

Proof. We use induction on ℓ(∆E). For k = 1, we have Z(∆E) = σE and Z(∆F ) = σF , and the theorem
follows from Corollary 6.8. Suppose the result is true for all segments ∆′

F and ∆′
E with ℓ(∆′

F ) = ℓ(∆′
E) < k.

We fix a lattice L0 in σE that is stable under the action of Gm(E)⋊ Γ. Then L0 × · · · × L0 (k-times) is a

Gn(E)⋊Γ-stable lattice in σE × · · · ×σEν
k−1
E , call it Lk. Let L be the intersection L′ ∩Z(∆E). Then L is a

lattice in Z(∆E) that is stable under Gn(E)⋊Γ. Since Z(∆E)|Pn(E) is isomorphic to (Φ+)m−1 ◦Ψ+(Z(∆−
E)),

it follows from [EH14, Section 3] that

L|Pn(E) ≃ (Φ+)m−1 ◦Ψ+(L−),

where L− = Z(∆−
E)∩Lk−1. Note that Lk−1 is the lattice L0× · · ·×L0 ((k− 1)-times) in σE × · · ·×σEν

k−2
E ,

stable under the action of Gn−m(E)⋊ Γ. Now using [TV16, Proposition 3.3], we get that

Ĥ0(L|Pn(E)) ≃ (Φ+)m−1 ◦Ψ+
(
Ĥ0(L−)

)
. (7.2)

By induction hypothesis, we have Ĥ0(L−) ≃ rl(Z(∆
−
E))

(l) = Z(rl(∆
−
E)

(l)). Thus it follows from (7.3) and

[Vig96b, Chapter 3, 1.5] we get that Ĥ0(L) as an irreducible representation of Pn(F ) and hence irreducible
as a representation of Gn(F ). Let λ be the partition (m,m, . . . ,m) of the integer n, and let Pλ =MλNλ be

the parabolic subgroup of Gn. The isomorphism implies that Ĥ0(L)Nλ(F ) is non-zero. Then using Lemma
6.2 and Corollary 6.8, we get the following isomorphism of Mλ(F )-representations:

Ĥ0(L)Nλ(F ) ≃ Z(rl(∆F )
(l))Nλ(F ). (7.3)

The irreducibility of Ĥ0(L) and the isomorphism (7.3) implies that

Ĥ0(L) ≃ Z(rl(∆F )
(l))
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as a representation of Gn(F ) (see [Vig98, Proposition V.9.1]). □

Remark 7.4. Additionally, we now give a proof of the fact that Ĥ0(L) is a subrepresentation of rl(σF )
(l) ×

· · · × rl(σF )
(l)ν

l(k−1)
F . For that, we again use induction on the length of ∆E and ∆F . For k = 1, the result

follows from Theorem (6.8). Assume that the result is true for all Z(∆)’s with ℓ(∆) < k. Now, consider the
lattice Z(∆−

E) ∩ Lk−1 in Z(∆−
E). By induction hypothesis, we have

Ĥ0
(
Z(∆−

E) ∩ Lk−1

)
↪→ rl(σF )

(l) × · · · × (rl(σF )ν
k−2
F )(l). (7.4)

Applying the composition (Φ+)m−1 ◦Ψ+ to (7.4) and then using [TV16, Proposition 3.3], we get

Ĥ0(L)|Pn(F ) ↪→
(
rl(σF )

(l) × · · · × (rl(σF )ν
k−1
F )(l)

)
|Pn(F ).

Thus, the natural map Ĥ0(L) → Ĥ0(Lk) is non-zero. Now the irreducibility of Ĥ0(L) shows that

Ĥ0(L) ↪→ rl(σF )
(l) × · · · × (rl(σF )ν

k−1
F )(l). (7.5)

Moreover, the relation (7.5) directly concludes the above theorem under the assumption that l does not divide
|Gn(Fq)|.

8. Irreducibility of Tate Cohomology of generic representations

In this section, we discuss the first Tate cohomology of representations of the form L(∆), where L(∆) is
defined in subsection (2.7.2). We assume that l does not divide the pro-order of Gn(F ). This is important
for the induction step in the proof of main theorem. We continue with the notation that σF is an l-adic
cuspidal representation of Gn(F ) and σE is the base change lift of πF to Gn(E).

8.1. Keep the notations as in subsection (7.2). Recall that L(∆E) is the unique generic quotient of the

parabolically induced representation σE×σEνE×· · ·×σEνk−1
E . Now fix a Gm(E)-invariant lattice L0 in σE .

Then we have the Gn(E)-invariant lattice L0× · · ·×L0 in σE × · · ·×σEνk−1
E , and the image of L0× · · ·×L0

under the surjection

σE × σEνE × · · · × σEν
k−1
E −→ L(∆E),

say L, is again a Gn(E)-invariant lattice in L(∆E) that is stable under action of Gn(E). As in subsection
(7.3), an isomorphism between σE and σγE induces an isomorphism Tγ : L(∆E) → L(∆E)

γ with T lγ = id and
Tγ(L) = L. Here, the group Γ acts on the lattice L by Tγ .

Proposition 8.1. Let L be a lattice in L(∆E) that is stable under the action of Gn(E) and Tγ . Then

Ĥ1(L) = 0.

Proof. We proceed by induction on ℓ(∆E), which equals k. When ℓ(∆E) = 1, then L(∆E) = σE , and in this
case the proposition follows from [Ron16, Theorem 6]. Suppose the result is true for all representations L(∆),
where ℓ(∆) is strictly less than k. Let τ = L(∆E)|Pn(E). Consider the filtration of Pn(E)-representations:

(0) ⊆ τn ⊆ · · · ⊆ τ2 ⊆ τ1 = τ,

where τi/τi+1 = (Φ+)i−1 ◦Ψ+(τ (i)) and τ (i) is the i-th derivative of τ . According to [Zel80, Proposition 9.6],
we have

τ (j) = 0, if j is not divisible by m, and

τ (rm) = L
({
σEν

r
E , . . . , σEν

k−1
E

})
, for r = 0, 1, . . . , k − 1.

For each 1 ≤ i ≤ n, let Li be the Pn(E)-invariant lattice in τi, defined by Li = (Φ+)i−1 ◦ (Φ−)i−1(L|Pn(E)).

The map Tγ induces an isomorphism between τ (i) and (τ (i))γ , and also between the representations τi and

τγi . Hence, there is an action of Γ on both τ (i) and τi. Moreover, the lattice Li is stable under action of Γ.
For each s ∈ {1, 2 . . . , k − 1}, we have an exact sequence of Pn(E)⋊ Γ-modules

0 −→ L(s+1)m −→ Lsm −→ (Φ+)sm−1 ◦Ψ+(L−
sm) −→ 0, (8.1)
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where L−
sm is a lattice in L

({
πEν

s
E , . . . , πEν

k−1
E

})
that is stable under the action of Gn−sm(E) ⋊ Γ. By

induction hypothesis, we have Ĥ1(L−
sm) = 0, and the long exact sequence of Tate cohomology gives

· · · −→ Ĥ1(L(s+1)m) −→ Ĥ1(Lsm) −→ 0 −→ Ĥ0(L(s+1)m) −→ · · ·

For s = k−1, we have the representation τn, which equals ind
Gn(E)
Nn(E)(ψE). In this case, Ĥ1(Ln) = 0 by [TV16,

Proposition 3.3]. Then from the above long exact sequence, we get that Ĥ1(L(k−1)m) = 0. Again using the

above long exact sequence for s = k − 2, we get that Ĥ1(L(k−2)m) = 0. Thus, an inductive process gives

Ĥ1(L|Pn(E)) = Ĥ1(Lm) = 0.

□

8.2. Let πE be a generic, integral l-adic representation of Gn(E). Then πE is of the form

L(∆1)× L(∆2)× · · · × L(∆t),

where for each j ∈ {1, 2, . . . , t}, the representation L(∆j) is integral. Let Lj be a lattice in L(∆j), defined
as in subsection (8.1). Let Tγ,j be the isomorphism between L(∆j) and L(∆j)

γ such that Tγ,j(Lj) = Lj .
Now consider the Zl-module L = L1 × · · · × Lt. Then L is a lattice in πE that is stable under the action of

Gn(E). Moreover, we have an isomorphism Tγ : πE → πγE , induced by
{
Tγ,j

}t
j=1

, such that Tγ(L) = L.

Corollary 8.2. Assume that l does not divide |Gn(Fq)|. Let πE be a generic, integral l-adic representation of

Gn(E) as above. Let L be a lattice in πE that is stable under the action of Gn(E) and Tγ . Then Ĥ1(L) = 0.

Proof. Using Proposition 5.1, we have

Ĥ1(L) = Ĥ1(L1)× · · · × Ĥ1(Lt).

Now applying Proposition 8.1, we get that Ĥ1(Li) = 0, for each i. Hence the theorem. □

Next, we aim to prove the following

Theorem 8.3. Let E/F be a finite Galois extension with [E : F ] = l, where l and p are distinct primes
such that l does not divide |Gn(Fq)|. Let σF be an integral cuspidal l-adic representation of Gm(F ), and
let σE be an integral cuspidal l-adic representation of Gm(E) obtained as a base change of σF . Let ∆F ={
σF , σF νF , . . . , σF ν

k−1
F

}
and ∆E =

{
σE , σEνE , . . . , σEν

k−1
E

}
be two segments (Here n = km). Then

Ĥ0(L(∆E)) ≃ rl(L(∆F ))
(l).

Proof. We prove the theorem using induction on ℓ(∆F ). Since l does not divide |Gn(Fq)|, the mod-l reduction
of the irreducible integral representation L(∆F ) is also irreducible and we have

rl(L(∆F )) = L(rl(∆F )),

where rl(∆F ) is defined as in subsection 7.3. Using the long exact sequence in Tate cohomology for the exact
sequence (8.1) we get a filtration

resPn(F ) Ĥ
0(L) = η1 ⊇ η2 ⊇ · · · ⊇ ηn,

such that ηi/ηi+1 ̸= 0 if and only if i is a multiple of m and moreover, ηms/ηm(s+1) is an irreducible

representation of Pn. Since the lengths of Pn(F ) representations Ĥ0(L) and rl(L(∆F )) are the same, the
theorem follows from Theorem 6.7. □

Let us continue with the hypothesis as in Theorem 8.3. Let π be an integral l-adic generic representation
of Gn(E), and let L be an Gn(E)⋊ Γ-stable lattice π. Since l does not divide |Gn(Fq)|, the mod-l-reduction

L/lL is irreducible. Hence it follows from Lemma 8.2 that the semisimplification of Ĥ0(L) is independent of
the choice of L. We denote this semisimplification by Ĥ0(π). Then we have

Corollary 8.4. Let E/F be a finite Galois extension with [E : F ] = l, where l and p are distinct primes such
that l does not divide |Gn(Fq)|. Let πF be an integral l-adic generic representation of Gn(E), and let πE is
an integral l-adic representation of Gn(E) such that πE is a base change of πF (Note that πE ≃ πγE). Then

Ĥ0(πE) = rl(πF )
(l).
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Proof. This follows from Proposition 5.1 and Theorem 8.3. □
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Ann. Sci. École Norm. Sup. (4) 13 (1980), no. 2, 165–210. MR 584084

Santosh Nadimpalli,
nvrnsantosh@gmail.com, nsantosh@iitk.ac.in.
Sabyasachi Dhar,
sabya@iitk.ac.in

Department of Mathematics and Statistics, Indian Institute of Technology Kanpur, U.P. 208016, India.


	1. Introduction
	2. Preliminaries
	2.1. 
	2.2. 
	2.3. 
	2.4. Smooth representations and Integral representations
	2.5. Parabolic induction.
	2.6. Cuspidal and Supercuspidal representation
	2.7. Generic representation
	2.8. Kirillov Model

	3. Review of Local Constants and Weil-Deligne representations
	3.1. 
	3.2. Semisimple Weil-Deligne representation
	3.3. Local Constants of Weil-Deligne representation
	3.4. Local constants of -adic representations

	4. Local Langlands Correspondence
	4.1. The -adic local Langlands correspondence
	4.2. Local base Change for the extension 

	5. Tate Cohomology
	5.1. 
	5.2. Tate Cohomology of sheaves on -spaces
	5.3. Comparison of integrals of smooth functions
	5.4. Frobenius Twist

	6. Tate Cohomology of Whittaker Lattice
	6.1. Jacquet-functors and Tate cohomology
	6.2. The  case
	6.3. 
	6.4. The general case

	7. Base change for 
	7.1. 
	7.2. 
	7.3. 

	8. Irreducibility of Tate Cohomology of generic representations
	8.1. 
	8.2. 

	References

