
MTH641A CLASSICAL GROUPS AND THEIR LIE ALGEBRAS

INSTRUCTOR: SANTOSH NADIMPALLI

1. Lecture 1: Classical groups and their Lie algebras

1.1. Let k be a field and let V be a finite dimensional vector space over k. The group of invertible k-linear
ransformations is denoted by GLk(V ). For any bilinear form B : V ⇥ V ! k, we denote by O(V, k), the
subgroup of GLk(V ) which preserve the form B, i.e., T 2 GLk(V ) such that

B(Tv, Tw) = B(v, w), v, w 2 V.

The group SOk(V ) is the subgroup of Ok(V ) defined as the kernel of the determinant map. Let K/k be a
quadraic extension and let � be a non-trivial element of Gal(K/k). Let W be a K vector space. A hermitian
form h : W ⇥W ! K on W is a k-bilinear and

h(↵v,�w) = ↵�(�)h(v, w), v, w 2 W.

and

h(v, w) = h(w, v), v, w 2 W.

The group U(W,h) is the subgroup of GLK(W ) consisting of all K-linear transformations of W such that

h(T (v), T (w)) = h(v, w), v, w 2 W.

When k is C or R the groups GLk(V ), SLk(V ), O(V, h), SO(V,B) and U(W,h) are some of the fundamental
examples of transformation groups. These are the groups which underline various geometries. This couse will
initially deal with the infinitisimal structure of these groups called the Lie groups. However, we will first strudy
the structure of these groups when k = R or k = C.

1.2. Lie algebras. . The Lie algebra is motivated by the neighbourhood of the group of linear transformation
groups. Note that the groups defined in the above paragraph are solutions to some equations with coe�cients
in k, i.e.,

G = {x 2 kn
2

: f1(x) = f2(x) = · · · fk(x) = 0}
for some fi 2 k[xij : 1  i, j  n] and G(A) is a subgroup of GLn(A) for all k-algebras A. Now consider the
ring k[✏], where ✏2 = 0. Let G(k[✏]) be the set of k[✏] valued solutions to the equation f1, f2, . . . , fk. Since the
multiplication law on G is a polynomial (with coe�cients in k) in coordinates {xij}, we get that G(k[✏]) is a
group and moreover we have a group homomorphism

G(k[✏])
⇡�! G(k).

The kernel of ⇡ consists of matricies of the form id+✏M , where M varies over a vector k-vector space denoted
by g. Note that the map

G(k[✏1])⇥G(k[✏2]) ! G(k[✏1, ✏2]); (g1, g2) 7! g1g2g
�1
1 g�1

2

around id is given by

(1 + ✏1M1)(1 + ✏2M2)(1� ✏1M1)(1� ✏2M2) = 1 + ✏1✏2(M1M2 �M2M1)

Note that G(k[✏1✏2]) is a subgroup of G(k[✏1, ✏2]). Thus, we get that M1M2 �M2M1 belongs to g. Thus, the
space g is closed under the operation (M1,M2) 7! M1M2 �M2M1. The abstract definition of this structure is
called a Lie algebra:
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Definition 1.1. A k-vector space g equipped with an alternating bilinear form

[ ] : g⇥ g ! g

is called a Lie algebra if it satisfies the condition

[X[Y Z]] + [Z[XY ]]] + [Y [ZX]] = 0. (1.1)

The definitions of a Lie subalgebra is likewise defined.

Exercise 1.2.1. (1) Show that the Lie algebra associated with SLn is given by trace-zero matricies (this
is denoted by sln).

(2) Let B be a symmetric or an alternating bilinear form on a k-vector space V , and let g be the space

{T 2 Endk(V ) : B(Tv,w) +B(v, Tw) = 0.

Show that g under the operation [T1, T2] = T1T2 � T2T1 is a Lie algebra.
(3) You may replace B by a hermitian form on W and g consists of K-linear transformations with

h(Tv,w) + h(v, Tw) = 0.

The algebra g is a Lie subalgebra of Endk(V ).
(4) Let (g, [ ]) be the pair (R3,⇥). Show that g is a Lie algebra. Can you get an isomorphism of this Lie

algebra with the types studied in the previous examples.
(5) Show that any two dimensional Lie algebra is abelian, i.e., the bracket operation is the zero operation.

We will later prove that a finite dimensional Lie algebra over an algebraically closed field k is a Lie subalgebra
of glk(V ) and that any Lie subalgebra of glk(V ) arrises as a Lie algebra of an algebraic group. The simplest
groups are abelian groups, then we study nilpotent followed by solvable and then simple groups. Lie algebras
being associated with groups there are analogues of these notions in Lie algebras as well.

Definition 1.2. A subalgebra g0 of g is called an ideal of g if for all X 2 g and Y 2 g0 we have g0.

Naturally kernerls of Lie algebra homomorphisms is an ideal and vice-versa, the first isomorphism theorem.

Exercise 1.2.2. What are the ideals of sln and the ideals of Lie algebra associated with a non-degenerate
symmetric or alternating bilinear form B?

Exercise 1.2.3. A derivation of a Lie algebra is a map � : g ! g such that �([X,Y ]) = [�(X) Y ] + [X, �(Y )].
Show that the space of derivations of a Lie algebra g is a Lie algebra under composition. Let Der(g) be the
space of Lie derivations of g. Let �X : g ! g be the map Y 7! [X,Y ]. Show that the map � : g ! Der(g) given
by X 7! �X is a map of Lie algebras. The kernel of the map � is called the centre of the Lie algerba g. The
image of the map � is called the space of inner derivations. Given example where � is neither surjective nor
injective.

1.3. Solvable and Nilpotent Lie algebras. Let g be a Lie algebra and let Dk(G) be a decreasing sequence
of characteristic ideals of g defined by setting Dk(g) by setting D1(g) = g and Dk+1(g) = [Dk(g), Dk(g)].
This decreasing sequence will be called the derived central series. If this series is eventually zero then we call
g is solvable. Similarly, we may define Ck(g) by setting C1(g) = g and Ck+1(g) = [g, Ck(g)]. If this series
decreases to zero then we call the Lie algebra to be nilpotent Lie algebra. Examples being the space of upper
traiangular matrices bn(k) and un(k), the upper triangular matricies with all diagonal entries as zero. Infact
if g is nilpotent then we can show that g embeds as a subalgebra of un(k) and if g is solvable then g is a
subalgerba of bn(k), when k is algebraically closed.

Theorem 1.3 (Lie and Engel’s theorem). Let g be a nilpotent (resp. solvable) Lie subalgebra of glk(V ). Then
g is isomorhic to a subalgebra of un(k) (resp. when k is algebraically closed, subalgebra of bn(k)).

Proof. We need to show that there exists a vector v 2 V such that x.v = 0, for all x 2 g. To do this we use
induction of the dimension of g and simultaneously for all vector spaces V over k. The proof uses the following
trick: construct a co-dimension one ideal of g. From the definition, we know that adx : g ! g is a nilpotent
operator. Assume that g1 is a Lie subalgebra of dimension m < n. Note that adx : g/g1 ! g/g1 is nilptoent
for all x 2 g1. Thus, there exists an element y 2 g\g1 such that adx(y) = 0 for all x 2 g1. Thus, we get that
g1 is an ideal of g1 + hyi. Using induction we get that g has a codimension one ideal.
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The space U annihilated by g1 is non-zero by induction hypotesis and x 2 g\g1 fixes U . Thus, we get that
there exists a non-zero vector u 2 U such that xu = 0. Hence, we get the theorem. Now using a similar
modification of this result, when k is algebraically closed, one can prove Lie’s theorem on solvable subalgebras
of glk(V ). For X 2 g, the map X 7! [X,Y ] is denoted by adX .

Exercise 1.3.1. (1) Show that g is nilpotent is equivalent to saying that there exists a decresing sequence
ideals gi such that [g, gi] ✓ gi+1.

(2) g is nilpotent then the map adX is nilpotent.
(3) Show that the centre of a nilpotent Lie algebra is non-zero.

⇤
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2. Introduction to manifolds

2.1. A manifold is the data (X,F), where X is a second countable locally compact Housdor↵ topological
space and F is a sheaf with the following property: for all p 2 X, there exists an open set Up of X containing
p and an open set Up of Rn such that

(Up, resUp F) ' (Up, C
1
Up
).

Here C1
Up

is the sheaf of C1 functions on Up. We denote by F with the notation C1
X and the space C1

X (X)
with C1(X). This is the definition of C1-manifold and we may similarly define analytic and holomorphic
manifolds. We leave it for the reader to write such definitions. This is not the usual definition of manifolds
we find in books so some work is needed to relate this to the well known definitions and I leave them in the
following set of exercises:

Exercise 2.1.1. (Usual definition of a manifold) Let (X,F) be a manifold. Show that there exists a cover
{U↵ : ↵ 2 I} of X and u↵ : U↵ ! Rn homeomorphisms on to their respective images such that whenever
U↵ \ U� is non-empty the map u↵ � u�1

� is a di↵eomorphism.

The elements of C1(X) are identified with the set of functions on X.

Exercise 2.1.2 (Fact). Note that our definition of a manifold (X,F) implicitly assumes the paracompactness
of X and hence the normality of X. Let {U↵}↵2I be a locally finite open cover of X. Show that there exists
a family of di↵erentiable functions { ↵} such that the support of  ↵ is contained in U↵ and  ↵ � 1 andP

↵  ↵ = 1.

Exercise 2.1.3. Let U be any paracompact open subset of X show that F(X) ! F(U) is surjective. Let K
be any closed subset of X. Show that the restriction map F(X) ! F(K) is surjective.

Given the definition it is our job to actually give examples. The following exercise are helpful to get an
introduction to the idea of sheaves in a quick way.

Exercise 2.1.4. (1) Let {U↵} be an open cover of X and let F↵ be a family on sheaves on U↵. Assume
that there exists a family of maps u↵,� : resU↵\U� F↵ ' resU↵\U� F� such that u↵�u�� = u↵� , then
there exists a unique sheaf F such that resU↵ F ' F↵.

(2)


