MTH204 2022-FEB; MIDSEM EXAM

INSTRUCTOR: SANTOSH NADIMPALLI

Instructions:

- (1) You can only use concepts and results, introduced and proved respectively, in this course to answer the following questions.
- (2) Partial scores will be given only for a complete and correct statement, if they are relevant to the solution of the final problem.
- (3) Please do not discuss these questions with other students or on the internet forums like math stackexhange.
- (4) I reserve the right to give zero score if two candidates produce the exact same answers. I reserve the right to give zero score if the solution is found exactly the same solution on an internet forum.
- (5) Please remember that there are two pages in this question paper.
- (6) You are suggested to restrict your answers to one side of a page for each question.
- (7) Note that the set $\{1, 2, \ldots, n\}$ is denoted by [n].
- (8) Answer any choice of questions with total 40 points. You can score a maximum of 40 points in this exam.

1. 15 points Let n be a positive integer and let R_n be the vector space $\mathbb{C}[X_1, \ldots, X_n]$ consisting of polynomials in n-variables (X_1, \ldots, X_n) . Let S_n be the group of bijections between [n] to [n]. For $f \in C[X_1, \ldots, X_n]$, we denote by $S_f \subseteq S_n$ the subgroup defined by

$$S_f = \{ \sigma \in S_n : f(X_1, X_2, \dots, X_n) = f(X_{\sigma(1)}, X_{\sigma(1)}, \dots, X_{\sigma(n)}) \}.$$

Does there exists an $f \in R_4$ such that S_f is isomorphic to S_3 , A_4 (permutations in S_4 with sign 1), Q_8 (quaternions), $(\mathbb{Z}/2\mathbb{Z})^2$, $(\mathbb{Z}/2\mathbb{Z})$, D_4 (dihedral group of cardinality 8) and $\mathbb{Z}/3\mathbb{Z}$.

(Not a part of the exam: Given any subgroup H of S_n , show that there exists an $f \in R_n$ such that $S_f = H$.)

2. 15 points For any two groups G and H, we denote by Hom(G, H), the set of group homomorphisms from G to H.

- (1) (4 points) Compute the cardinality of the set $\text{Hom}(\mathbb{Z}/n\mathbb{Z},\mathbb{Z}/m\mathbb{Z})$, where n and m are arbitrary positive integers.
- (2) (5 points) Compute the cardinality of the set $\text{Hom}(\mathbb{Z}^2, S_6)$. (Here, \mathbb{Z}^k is the group $\mathbb{Z} \times \mathbb{Z} \times \cdots \times \mathbb{Z}$, the k fold direct product of \mathbb{Z} .)
- (3) (6 points) Show that for any finite group G, |G| divides $|\operatorname{Hom}(\mathbb{Z}^3, G)|$.

It is interesting to generalise this question. One may think about computing (or form a generating series of) the cardinality of Hom(\mathbb{Z}^k, S_n), for arbitrary k and n. (Although not a part of the exam).

3. (5 points) Let p be a prime number. Show that there exists a matrix $g \in GL_2(\mathbb{F}_p)$ such that g does not have any eigenvalues in \mathbb{F}_p , i.e., there exists no $\lambda \in \mathbb{F}_p$ such that $g(v) = \lambda v$, for some non-zero $v \in \mathbb{F}_p^2$. Show that the set $K = \{aI_{2\times 2} + bg : a, b \in \mathbb{F}_p\}$ is a field.

- 4. (5 points) Every group G with exactly 5 subgroups is abelian.
- 5. (10 points) Give very short answers.
- 5.1. (2 point) Give an example of a non-abelian group with all its subgroups normal.
- 5.2. (2 point) What are the subgroups of $\mathbb{Z} \rtimes \operatorname{Aut}(\mathbb{Z})$.

5.3. (3 point) Prove or disprove the following statement: Let p be the least prime dividing |G|. If N is a subgroup of G such that |G/N| = p. Then N is normal.

Date: March 6, 2022.

5.4. (3 points) Show that any element of A_n can be written as $xyx^{-1}y^{-1}$ for some $x, y \in A_n$