<u>Errata</u>

Chapter: 2 Channel Flow

Page: 45

Equation: 2.109

Replace " \forall " by " \forall_{o} "

Chapter: 3 Transport Laws

Page: 94

Equation: 3.106

Replace $w_4 \frac{1}{\rho T} \frac{\overline{\partial p}}{\partial x_i}$ with $w_4 \frac{1}{\rho T} \frac{\overline{\partial p}}{\partial x_i} \frac{\partial T}{\partial x_j}$.

Page: 98

Problem 3.2: Replace $\frac{xn^2}{Z}$ with $\frac{xn^2}{2}$.

Page: 99

Problem 3.5(a): Delete 'of problem 1(b)'.

Chapter 4 Diffusion Dispersion and Mixing

Page: 117

The sentence, "If we change the" should be modified as: If we change the velocity to 1.0 mm/sec, we have:

T_{convection, 1} = T_{convection, 2} = 1 mm/(1 mm/sec) = 1 sec

Chapter: 5 Surface Tension – Dominated Flows

Page: 159

Equation: 5.16

'dE' should be replaced by 'dG'.

Equation: 5.17

 $\frac{dE}{dx}$ should be replaced by $\frac{dG}{dx}$.

Page: 160

Equation: 5.22

'dE' should be replaced by 'dG'.

Page: 178

Equation: 5.69

 $\frac{2\sigma_{front}}{a}$, should be replaced by $\frac{2\sigma_{front}}{a}\cos\theta_{front}$.

Equation: 5.70

 $\frac{2 \sigma_{rear}}{a}$ ' should be replaced by $\frac{2 \sigma_{rear}}{a} \cos \theta_{rear}$ '.

Equation: 5.71

$$(\frac{2}{a}(\sigma_{front} - \sigma_{rear}))$$
' should be replaced by $(\frac{2}{a}(\sigma_{front}\cos\theta_{front} - \sigma_{rear}\cos\theta_{rear}))$ '.

Page: 184

Equation: 5.84

$$\frac{\sigma_T \beta_h^2}{\mu}$$
, should be replaced by $\frac{\sigma_T \beta_h^2}{\mu \alpha}$.

Chapter: 6 Charged Species Flow

Page: 232

Equation: 6.70

$$\left(\frac{\varepsilon}{K_{el}}\frac{L}{\lambda_D}\right)$$
' should be replaced by $\left(\frac{\varepsilon L}{2K_{el}\lambda_D}\right)$ '.

Equation: 6.71

'3.6 ms' should be replaced by '3.6 ns'.

Equation: 6.72

'1.7 KHz' should be replaced by '1.7 GHz'. The line below it should also be 'Gigahertz' instead of 'Kilohertz'.

Page: 243

Equation: 6.121

The ' + ' sign should be replaced by ' - ' sign.

Page: 273

Problem 6.2: Replace '... radius a of 1 m' with '... radius a of 1 μ m'.

Page: 274

Problem 6.2: Delete part (d).

Chapter: 7 Magnetism and Microfluidics

Page: 291

Equation 7.42: Multiply " μ_0 " in the first right hand side term of the equation

Page: 292

Equation 7.45: Multiply " μ_0 " in the first right hand side term of the equation

Page: 301

Problem 7.1: "channel" should be replaced by "DC MHD pump uses channel"

and "has depth" should be replaced by "with depth"

and "magnetic field" should be replaced by "perpendicular magnetic field".

Problem 7.2: "channel" should be replaced by "DC MHD pump uses channel"

and "dimension is" should be replaced by "of dimension".

Problem 7.3: "12 mA" should be replaced by "12 mA current"

and "10 mA" should be replaced by "10 mA current".

Delete " 5 mA NACl".

Chapter: 8 Microscale Conduction

Page: 317

Equation: 8.36

Replace
$$\left(\frac{1}{e^{K_BT+1}}\right)$$
 by $\left(\frac{1}{e^{K_BT+1}}\right)$.

Equation: 8.36

Replace n_e' by N_e' . Similarly, n_e' should be replaced by N_e' in the sentence below Equation 8.38.

Page: 321

Equation: 8.46

$$(\frac{1-2\lambda_{mfp}}{(3\pi L)})$$
' should be replaced by $(1-\frac{2\lambda_{mfp}}{(3\pi L)})$ '

Equation: 8.47

' $\frac{1-\lambda_{mfp}}{3L}$ ' should be replaced by ' $1-\frac{\lambda_{mfp}}{3L}$ '.

Chapter: 9 Microscale Convection

Page: 363

Replace $\frac{160}{9} \frac{(\sigma \rho_f - 3\mu_f G)}{\sigma^2}$, by $\frac{169}{9} \frac{(\sigma \rho_f - 3\mu_f G)}{G^2}$,

Page: 371

'Su_g =
$$\frac{\rho_g \sigma D}{\mu_g^2} X_{++}$$
 = ' should be replaced by 'Su_g = $\frac{\rho_g \sigma D}{\mu_g^2} = X_{++}$ = '.

Page: 371

Replace ' $\left(\frac{dp}{dz}\right)_g = \frac{-2f_f r_f G^2 x^2}{D_h}$, by ' $\left(\frac{dp}{dz}\right)_g = \frac{-2f_g r_g G^2 x^2}{D_h}$.

Page: 372

Problem 9.2: Insert "of 1.0 W/m²" after "surface heat flux".

Page: 372

Problem 9.3: Replace "problem 2.0" with "problem 9.2".

Page: 372

Problem 9.4: Replace "problem 2.0" with "problem 9.2".

Page: 373

Table 9.5: μ_f =6.01 × 10⁻⁴ kg/m-s, μ_g =4.116 × 10⁻⁴ kg/m-s

Page: 373

Table 9.8: Use the following properties

 $\begin{array}{l} {\rm T}_{sat}=529.36~{\rm K},\,\rho_f=789.52~{\rm kg/m^3},\,\rho_g=22.224~{\rm kg/m^3},\,h_f=1116.2~{\rm kJ/kg},\\ h_g=2798.5~{\rm kJ/kg},\,K_f=610.09{\times}10^{-3}~{\rm W/m\text{-}K},\,\mu_f=103.48{\times}10^{-6}~{\rm Pa\text{-}s},\,\mu_g=17.663{\times}10^{-6}~{\rm Pa\text{-}s},\,\sigma=24.582{\times}10^{-3}~{\rm N/m},\,{\rm C}_{p,f}=4.9395~{\rm kJ/kg\text{-}K} \end{array}$

Page: 373

Problem 9.9: Replace "incipience quality" with "incipience dry out quality".

Page: 373

Problem 9.10: Replace "132 bar" with "1.0 bar".

Use the following properties:

Properties for this problem can be used are as follows:

(a) $P_R = 0.0045$, $P_{sat} = 0.0992$ MPa, $T_{sat} = 452.68$ K, $\rho_f = 634.97$ kg/m³, $\rho_g = 79.95$ kg/m³, $h_f = 1539.4$ kJ/kg, $h_g = 2657.9$ kJ/kg, $K_f = 497.87 \times 10^{-3}$ W/m-K, $\mu_f = 73.613 \times 10^{-6}$ Pa-s, $\mu_g = 21.707 \times 10^{-6}$ Pa-s, $\sigma = 7.27 \times 10^{-3}$ N/m, $C_{p,f} = 7.3559$ kJ/kg-K

(c) $P_R = 0.6$, $P_{sat} = 132$ bar, $T_{sat} = 605.1$ K, $\rho_f = 634.97$ kg/m³, $\rho_g = 79.95$ kg/m³, $h_f = 1539.4$ kJ/kg, $h_g = 2657.9$ kJ/kg, $K_f = 497.87 \times 10^{-3}$ W/m-K, $\mu_f = 73.613 \times 10^{-6}$ Pa-s, $\mu_g = 21.707 \times 10^{-6}$ Pa-s, $\sigma = 7.27 \times 10^{-3}$ N/m, $C_{p,f} = 7.3559$ kJ/kg-K

Page: 373

Problem 9.11: Insert "P_{crit}=18.68 bar" after "P_{sat}=1.0 bar".

Page: 373

Problem 9.13: Use, $G = 250 \text{ kg/m}^2\text{-s}$.

The properties of CO_2 are as follows.

 $\rm T_{sat}$ = -16.2 °C = 256.93 K, $\rm P_{sat}$ = 2.194 MPa, ρ_f = 1014.9 kg/m³, ρ_g = 58.0 kg/m³, h_f = 162.19 kJ/kg, h_g = 436.5 kJ/kg, K_f = 130.32×10⁻³ W/m-K, μ_f = 131.37×10⁻⁶ Pa-s, μ_g = 13.368×10⁻⁶ Pa-s, σ = 7.6458×10⁻³ N/m, $\rm C_{p,f}$ = 2.208 kJ/kg-K

Page: 373

Problem 9.15: Replace "(b) P_{sat} = 1 bar, T_{sat} =-73.8 °C, P_R =0.014" with "(b) P_{sat} = 7.38 bar, T_{sat} =-48 °C, P_R =0.1" Use the following properties:

At $P_{sat} = 36.9$ bar, $T_{sat} = 2.2$ °C, $P_R = 0.5$: $\rho_f = 914.14 \text{ kg/m}^3$, $\rho_g = 104.66 \text{ kg/m}^3$, $h_f = 205.36 \text{ kJ/kg}$, $h_g = 429.54 \text{ kJ/kg}$, $K_f = 107.77 \times 10^{-3} \text{ W/m-K}$, $\mu_f = 95.616 \times 10^{-6} \text{ Pa-s}$, $\mu_g = 15.024 \times 10^{-6} \text{ Pa-s}$, $\sigma = 4.9925 \times 10^{-3} \text{ N/m}$, $C_{p,f} = 2.614 \text{ kJ/kg-K}$

At $P_{sat} = 7.38$ bar, $T_{sat} = -48$ °C, $P_R = 0.1$: $\rho_f = 1147.3 \text{ kg/m}^3$, $\rho_g = 19.335 \text{ kg/m}^3$, $h_f = 96.804 \text{ kJ/kg}$, $h_g = 433.27 \text{ kJ/kg}$, $K_f = 169.54 \times 10^{-3} \text{ W/m-K}$, $\mu_f = 221.8 \times 10^{-6} \text{ Pa-s}$, $\mu_g = 11.415 \times 10^{-6} \text{ Pa-s}$, $\sigma = 14.51 \times 10^{-3} \text{ N/m}$, $C_{p,f} = 1.977 \text{ kJ/kg-K}$

Page: 375

Problem 9.17: Replace "at HFE" with "of HFE"

Replace, "D_H=0.5 $\mu m^{\prime\prime}$ with "D_H=1.76 $\mu m^{\prime\prime}$

Replace, " $T_{in}=0$ °C" with " $T_{in}=0$ °C, $x_{in}=-0.65$ " Replace, " $T_{in}=-20$ °C" with " $T_{in}=0$ °C, $x_{in}=-0.85$ " Outlet pressure is 1.14 bar.