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Abstract 
 

     Given a set of data points, creating the parameterizations of 

the full surface that represents this point cloud is a problem of great importance to 

engineers and scientists. Though there is software available for this purpose, the process 

requires a lot of human intervention particularly in the selection of intermediate 

projection surfaces. This makes the overall process of surface generation slow. This 

report presents an algorithm to automatically find the good projection surface and an 

efficient method of projecting the points orthogonally on it. This will make the process 

fast many times. The proposed algorithm can be applied to surfaces having some 

geometric singularities also, provided the necessary pre-processing of given data is done. 

For generating the projections surfaces automatically, we interpolate the given point 

cloud by quadratic surfaces and proper surface of revolution. We use Fourier 

Continuation method to find a smooth function for a discrete set of data points 

representing a smooth function. We demonstrate our approach by randomly generating 

a point cloud for a known surface and then show our implementation results on the 

fuselage and engines of Falcon aircraft for which the point cloud was given/generated 

using softwares like computer aided design (CAD).                                                                                             
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1            Introduction        
                         
                This report presents an algorithm for high-order parametric representations of 3-D surfaces efficiently by 

making the intermediate process of selecting a good projection surface automatic. Until quite recently, the 

construction of surfaces involved manual work. The article [1] published gives a way to render full surface 

parameterizations for the given point cloud (thousands of points) for complex surfaces of engineering and scientific 

relevance. It “…renders both smooth and non-smooth portions of surface accurately, up to and including all points of 

geometric singularity like corners, edges, conical points etc…” [1] However, this method and software designed for 

this purpose require intensive human intervention, particularly, in the intermediate process of selection of 

projection surfaces, which makes the overall process of surface generation very slow. 

               “The problem of producing high-order parameterizations of surfaces is of great importance in wide range of 

field of science and engineering” which include medical imaging etc. [1]. In this report, we present an automatic and 

efficient method for creation of high-order surface representations for a given point cloud. We use the concept of 

Fourier Continuation [1] to find a smooth function that will represent a given point cloud (“…which should represent 

the smooth portions of a piecewise smooth function…” [1] ) best, by defining a periodic function on larger domain. 

The point cloud for the engineering surfaces is either provided or can be extracted using a computer aided design 

(CAD) system. This point cloud, however, need to be pre-processed in order to satisfy the requirements of algorithm.  

1.1   Brief Overview 

              This report has been organized in the following manner:  

• Section 2 briefly explains the Fourier Continuation method which gives smooth functions for the point cloud 

representing a smooth portion of a surface. For this, we use Method of Least-squares which has been 

discussed briefly in Section 2.1. 

• Section 3 presents an overall algorithm followed to find the surface parameterization for the given point 

cloud. The process has been demonstrated by randomly generating the point cloud for a known function of 

1-Dimension.  

• Section 4 presents our approach for finding the good projection surface automatically. An algorithm for 

finding the parametric form of this projection surface has been given in sub-section 4.3. Sub-section 4.4 

gives an efficient algorithm for projecting the point cloud orthogonally on the automatically generated 

projection surface. This is followed by our implementation results for 1-Dimensional functions and 2-

Dimensional function 

• Section 5 shows the results of implementation of our approach on the fuselage and engines of a Falcon 

aircraft. 

We have covered all conclusions and future directions in Section 6. 
 

2     The Fourier Continuation Method 

           According to the article [1] “…this method enables creation of rapidly convergent Fourier series, from discrete 

point values of functions that are smooth but not necessarily periodic.” It gives certain least-squares interpolation by 

trigonometric polynomials (also called as truncated/finite Fourier series which is periodic with period b and the 

periodicity interval is greater than the domain of point cloud) 

             ���� = ∑ ��	

��
�

��
����    �ℎ	�	 � ≤ �    
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of the point values  ���,���  where � = 1,2 … … … . . �. Here	��’s are the unknown Fourier modes to be determined 

and the total number of Fourier modes (2� + 1) should be less than N (the size of point cloud) i.e. we solve the 

oversampled system of equations in order to determine	��′s. Since the N data points may/are not equally spaced, so 

we use the Method of Least Squares discussed briefly in Section 2.1 [2] (Chapter 5, Section 5.3, page-236] to find 

them. For example, consider the function	$(�) = �, defined in the interval	0 ≤ � ≤ 1. Figure 2.1 shows the 

randomly generated set of data points in this interval 

 

            Figure 2.1: Randomly generated set of data points (here N=128) for the function y=x in the interval  � ∈ '0,1(
  

We want to interpolate this set of data points (representing a smooth curve) by truncated Fourier series. Clearly $(�) = � is not a periodic function but the interpolating polynomial is periodic with period b. We observe that the 

truncated Fourier series of f(x) = x oscillates around the points of discontinuity (also known as Gibb’s phenomenon) 

in the periodic extension of f with period 1 (Figure 2.2). “ To overcome this problem, the continuation method seeks 

a Fourier series of periodicity larger than the domain of definition of f(x)” [1]. In our case, we choose the enlarged 

periodicity interval to be0 ≤ � ≤ 2.    Figure 2.3 shows the enlarged periodicity interpolation. 

                            

Figure 2.2: Oscillating finite Fourier series of f(x) =x around  Figure 2.3: Interpolation of f(x) =x with enlarged 

  the points of discontinuity 0 and 1.   periodicity finite Fourier series. 

                    

2.1   Method of Least Squares 

           It is a standard method of finding the best fit curve to a given set of oversampled data points by minimizing the 

squares of offsets of points from their interpolating function. Suppose we are given N data points (��,��) where � = 1,2……… . . � and an interpolating function f (in one-dimension)  
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        $ )�, *+, *,, … … … … . , *�-   Where  m ≤ N 

Here *+, *,, … … … … . , *� are unknown’s. To determine them, we minimize the square of offsets i.e.  

                                  ∈,=  ∑ [ �� − $���, *+, *,, … … … . . , *��], 1
��+  ……………………………………………………..�2.1.1� 

We now differentiate (2.1.1) partially w.r.t. *+, *,, … … … . . , *� each to get a system of m equations to solve say 

Ax=b. Here the unknown coefficients are given by vector x. The vector x is called the least- square solution. Given an 

inconsistent system of equations, we want to find x from 2� so that the error | ∈ | = |4 − 5�| is minimum possible. 

This vector x is given by             

                                                                   

2.2   Fourier Continuation Method for 2-Dimensional functions 

            Just like in 1-Dimensional case, finite/truncated Fourier series i.e. the interpolation function in 2-Dimension is 

given by              

    ���, �� = ∑ ∑ ��	

��
�

�67
7��1 �7	


��89
���

����    �ℎ	�	 �, : ≤ �        

the periodicity 4+ and 4, are selected according to the domain of x and y respectively. Similarly, we can extend this 

approach to the higher dimension functions.  

3      Parameterization by projection and continuation 

               In order to obtain the surface parameterization for the given point cloud, we follow the following algorithm 

 given below and demonstrate it through an example:  

• Extract the points from the given point cloud that represent a smooth surface. ( e.g. See figure 3.1) 

• For the extracted point cloud, project the points on the projection surface (we give an algorithm for finding 

the good projection surface automatically in Section 3.1). 

• Find the point of orthogonal projection on projection surface for each point in the selected point cloud 

(Section 3.1.4). 

• Then, we find the directed distance of each point from the point of projection using the following equation  

                                                 ;�<=� = >?�=, �=@ − A�<=�B.  :�<C�DDDDDDDDDE ..................................................................... (3.1) 

 Where,  A�<=� is the parametric form of the projection surface with parameter t,  :�<C�DDDDDDDDDE  is the unit normal 

vector on the projection curve at the projection point FG.  
 

 
 

 

• Then we find the smooth distance function using Fourier continuation method for the discrete values 

obtained from equation 3.1. 

• So, now we have smooth distance function and a smooth projection surface/curve to determine the surface 

parameterization for the selected point cloud, given by: 

                                          ?H�<�, I�<�@ = A�<� + ;�<�. :�<�DDDDDDDDE…………………………………………………………. (3.2)    
 

   

 

 

 This whole process can be understood with the following example: 

 

STEP 1: 

� = �55J��+5J4       

NOTE: For 2-Dimensional functions, equation (3.1) is      

    ;�K=, L=� = >?�=, �= , M=@ − A�K=, L=�B.  :�KC, LC�DDDDDDDDDDDDDDDDE 

NOTE: Similarly, for 2-Dimensional functions, equation 3.2 is      

                                   �H�K, L�, I�K, L�, N�K, L�� = A�K, L� + ;�K, L�. :�K, L�DDDDDDDDDDDDDDE    
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Figure 3.1: Randomly generated point cloud in                                 Figure 3.2: Desired curve (black line) which              

interval [0, 1] for the curve given by the parametric              represents the randomly generated point equations    

�(<) = sin(<)  ,   �(<) = cos(<) + <,                                                    cloud (red) best. 

 

STEP 2:               

We now choose a projection curve for this point cloud (for the sake of demonstration only, though, we can 

automatically generate a good projection curve for a point cloud using the algorithm in Section 4) so that the 

resulting distance function is continuous. (Figure 3.3 shows the point cloud, projection curve and the 

projections) 

 

 

 

 
 

STEP 3:  

Now we project the given set of data points on this point cloud orthogonally. In order to project the points, 

we solve the equation 	>�= − H?<=@B. HT?<=@ + '�= − I?<=@(. IT?<=@ = 0  which is the dot product of tangent 

and normal to the projection curve at point H?<=@ and I?<=@  and since this equation may have 

trigonometric, exponential, logarithmic etc. terms depending on the projection curve selected (when we 

generate the projection curves/surfaces automatically, we can actually convert the equation, we solve to 

find projection points, to a quadratic, cubic, quartic or octic equations for which we know the solutions 

explicitly [2] ), we use Newton-Raphson method to find the roots. Since, Newton-Raphson method is an 

iterative process, it takes a long to find project even a single point, so this approach is very inefficient. Figure 

3.4(a) shows the skewed view of projection and Figure 3.4(b) shows the actual view. 

Figure 3.3: Original point cloud (red) and the selected projection curve given by the parametric 

equations  H(<) = U
V� . t. (X − <)   ,  I(<) = )V��,V - . < + 1 
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Figure 3.4(a) and 3.4(b): Skewed view and the actual view resp. of the projections (green) of the point cloud (red) on the projection 

curve (blue) selected. 
 

STEP 4: 

We now find the directed distance of each point in the point cloud from the point of orthogonal projection 

(See Figure 3.5).  
 

STEP 5:                

We then find the smooth distance function using Fourier Continuation Method (Section 2). Figure 3.6 shows 

the smooth distance function in the domain of the data. The curve is smooth in the domain but it can be bad 

outside it which we needn’t worry as we are concerned with the data in the domain only. 
 

                                       
Figure 3.5: Directed distance plot of the points  in                                      Figure 3.6:Smooth distance function (in the 

   the point cloud from their orthogonal                                                  domain) obtained using the Fourier Continuation         

                    point of projection.                                   method. 

 

STEP 6: 

We are ready to find the parameterization of the smooth curve for the original point cloud using equation 

3.2. (See Figure 3.7) 

 
      Figure 3.7: Smooth surface (blue) obtained for the  

given point cloud (red) using equation 3.2 
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4    Algorithm for finding the projection curve/surface automatically 

                 The projection surface should be such that the resulting directed distance plot is continuous to ensure the 

 smooth surface/curve parameterization for the point cloud. Such a projection curve/surface need not be  

 unique but our algorithm gives a good projection curve automatically. 

• 1-Dimensional functions 
In order to find the projection curve for the point cloud of 1-Dimensional functions, we interpolate the given 

point cloud by quadratic curves given by: 

                                                 5�, + 2Y�� + Z�, + [� + \� + � = 0 …………………………………………………. (4.1) 

Here A, B, C, D, E and F are unknown coefficients and we determine them using the method of least squares 

(Section 2.1). In order to solve the resulting homogeneous system of equations say]< = 0, where< ∈ �(]), 
We use the Single Value Decomposition (SVD) method [3 Chapter 2, Section 2.6, Page-69]. A brief description 

of SVD method is given in Section 4.2. After finding the coefficients, we parameterize the equation 4.1 using 

the algorithm explained in Section 4.3. 

 

4.1 Why interpolate by Quadratic curves? 
 

Interpolating by quadratic curves has advantages: 

1. We get a smooth projection curve for the given point cloud so that the final curve parameterization 

is also smooth. 

2. To find the projection points of the points in point cloud, we actually have to solve a cubic equation 

or quartic equation (Section 4.4) and we explicitly know the solutions for them [2]. 

              4.2 Single Value Decomposition method 

              Given any � × :  matrix 5, we can write it as:        

    5 = _[`J  where,          

� U is � × : orthogonal matrix with column vectors as Eigen vectors of  55J and can be written as 

(K+ K, … … … … … K1�. 

� D is : × : diagonal matrix with non-zero singular values a� such that a+ ≥ a, ≥ ⋯ … … … … … ≥ ad 

where r is the rank of matrix A. 

� V is : × : orthogonal matrix with column vectors as Eigen vectors of 5J5 and can be written as 

(L+ L, … … … … … L1�. 

                  Using the SVD method, we find the least square solution to the system of homogeneous equations Ax=0 as   

 follows:                     

 Clearly, x ∈ ��5� and we have an oversampled system of equations to solve, so m ≥ :.   

 Suppose rank (A) =n-1, where, � ≥ : − 1,  a1 = 0, then the solution is x=L1 as dim��5� ≠ 0.  

 Suppose rank (A) =n, then there are only trivial solution to the system of equations as now dim��5� = 0,

 but we choose the solution x=L1 . 

              4.3 Algorithm for parameterizing the quadratic equations 

              In order to parameterize the quadratic equation :         

                                      5�, + 2Y�� + Z�, + [� + \� + � = 0......................................................(4.1) 
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�    Write the equation 3.1.1 in the matrix form as:            

                 (� �) )5 YY Z- )��- +	([ \) )��- + � = 0 

�    Now, diagonalise the matrix h = )5 YY Z-, say h = iji�+ where j = kl+ 00 l,m	,	and transform 

into new coordinate system X-Y where	i�+ )��- = 	 )HI-. Let the equation in new coordinate system 

be:   

                               *H, + bI, + ;H + 	I + $ = 0 ………………………………………………………………. (4.2)                          

�    Now, by applying completing the squares approach on equation 4.2 if * ≠ 0	&	4 ≠ 0 or directly 

parameterizing it if either of *	or	4	is 0, the above equation will represent a parabola, ellipse or a 

hyperbola. We then parameterize the resulting equation depending on the quadratic curve it 

represents. This gives a smooth parametric form of projection curve. 

              4.4 How to project the point cloud on the projection curve orthogonally 

              To project the points in the point cloud, we follow the following approach:  

�     We find the point cloud representation in the new coordinate system	H − I using the value of X and 

Y in terms of x and y	q	i�+ )��- = 	 )HI-r. 

�     Let  (H� , I�) be a point in the point cloud in the new coordinate system. If (H, I) is the orthogonal 

projection of the point on the projection curve and ∇�(H, I) is the gradient of curve at point (X,Y), 

then the following equation holds: 

                 ?(H� − H), (I� − I)@ = t∇�(H, I)…………………………………………………… (4.3) 

Now there are three unknowns (H, I	and	t) and we also know the parametric representation of X 

and Y, so essentially, we have two unknowns (parameter (say t) andt). As we said in Section 4.1, we 

eliminate the variable t by dividing the two equations in 4.3 and convert the resulting equation into 

a cubic or quartic equation in sin(v) w� sin(2v)(in case of hyperbola and ellipse respectively) or 

quadratic equation in case of parabola. We know the explicit solutions to quadratic, cubic and 

quartic equations [2]. This gives us the possible projections of a point on the projection curve. We 

then select the point which is closest to the point in the point cloud. 
 

Implementation results of above algorithm (for 1-Dimensional functions): 
 
 

STEP 1: 

We generated the point cloud (N=260) for the curve represented by the parametric equations (See 

Figure 4.1): �(<) = cos < + 0.65 cos 2< −0.65 �(<) = 1.5sin	< 
Our goal is to find the parameterization of the curve that will represent this point cloud best. Now 

our only input to the algorithm will be the original point cloud. 
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Figure 4.1: Randomly generated point using the                                         Figure 4.2: Desired curve (black) for the point cloud  

                    Parametric equations above                         generated (red) 
 

 

STEP 2: 

We need a projection surface to project the points. Our algorithm implementation generated an 

ellipse as a good projection surface (See Figure 4.3). In order to project the points on the curve, we 

have to solve a fourth degree equation (Section 4.4) for which we know the solutions explicitly [2]. 

This approach is very much fast and efficient. 

 

Figure 4.3: Randomly generated point cloud (blue) and the projection surface (red) with projection (green) in the new 

Coordinate system 

  

STEP 3: 

We now find the directed distance and find a smooth distance function in the domain of data using 

Fourier Continuation Method (See Figure 4.4 and 4.5) 

 

                        
       Figure 4.4: Directed distance of the points in                                Figure 4.5: Smooth distance function in the 

      The point cloud from their point of projection                               domain obtained via Fourier Continuation  

                   method. 

 

STEP 4: 
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 Now, find the final smooth curve parameterization for the point cloud using equation 3.2. (See 

Figure 4.6) 
 

 
FIGURE 4.6: Final smooth curve (black) parameterization obtained  

For the point cloud (red)  

 

The only input to our algorithm is the randomly generated point cloud. The overall process is very 

efficient. Manually selecting the projection curves [1] consumes a lot of time but our approach took 

less than 5 sec. (in this case) to give the final surface parameterization for the point cloud. 

 

• 2-Dimensional Functions 

To find the projection curve for 2-Dimensional functions, we interpolate by the quadratic curves 

given by the following equation: 

                          5�, + Y�, + ZM, + 2[�� + 2\�M + 2��M + ]� + z� + {M + | = 0       

Now, to parameterize this equation, the matrix M in the algorithm given in Section 4.3 changes to:

     h = }5 [ \[ Y �\ � Z~ 

After getting the parametric form of projection surface, we project the points on this projection 

surface by solving the following equation(s):       

         ?(H� − H), (I� − I), (N� − N)@ = t∇�(H, I, N) ……………………………….(4.4)

 Suppose u and v are the parameters in the parametric form of ellipsoid, hyperboloid and 

paraboloid. In case of ellipsoid, by eliminating the variable t, we get two equations (in sin(u) and 

sin(v)) to solve. These equations have the following form:     

 															(1 − �,)(1 − �,)(*+�, + 4+� + �+) = ;+�, …………………………………………………….(4.5) 

             �,(1 − �,)(	(*,�, + 4,� + �,)) = ;,�, ……………………………………………………. (4.6)     

where  � = sin(K)&	� = sin	(L) and *+, *,, 	4+, 	4,, �+, �,, 	;+	&	;,	are the constants. We can now 

eliminate q using the equations 4.5 and 4.6 to get an octic equation in variable p. To explicitly find 

roots of the octic equation, we propose to write it as a product of two quartic equations and then 

we know how to solve quartic equations [2] (we haven’t yet found a way to factorize the octic 

equation and used MATLAB’s inbuilt solve function for our implementations). After finding the 

values of p, we find the corresponding values of q and then the general roots of sin(K) =�	and sin(L) = �. Then, select the root which gives the closest point to the point in point cloud on 

the projection curve. Similarly, in case of hyperboloid, for one sheet hyperboloid, we get an octic 

equation in terms of tan(K) and tan(L) and for a two-sheet hyperboloid; we get an octic equation in 

terms of sec(K) and	sec	(L) [NOTE: For the parameterization of hyperboloid projection curve, we are 

using tan and sec instead of cosh () and sinh () as we then don’t need to worry about which sheet of 
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hyperboloid should we select for the projections]. In case of paraboloid projection curve, the 

equations 4.5 and 4.6 are the following:                                                             

 *+K� + 4+K, + (�+L, + ;+L + 	+)K + $+L, + �+L + ℎ+ = 0 …………………………………………(4.7) 

              *,L� + 4,L, + (�,K, + ;,K + 	,)L + $,K, + �,K + ℎ, = 0 ……………………………………..(4.8) 

In order to solve these equations to find the roots, we propose to solve eq. 4.7 (using the technique 

described in [2] ) for u treating v as a constant and substitute the resulting values of u (in terms of v), 

to find the values of v and u later.  

 

Implementation results of our approach for 2-Dimensional functions: 
 

We generated a point cloud randomly for the surface (Figure 4.7) represented by the equation:                     

 
��

��(+��� ���(V�)) 	+ 	 (�6 ���(V�)��)
�

��(+��� ���(V�)) +	�
�
�� = 1 …………………………………….(4.9) 

           

 where a= 0.8 =b, c=1, t+ = 0.3, t, = 0.4, t� = 0.1 

      

 

 

 

 

 

 

 

 

          

 

 

  

             

 

 

  

                                                            Figure 4.7: Randomly generated point cloud on the surface 

 

We aim at finding the parameterization of the surface for the above point cloud. The following 

figures show the steps followed and the results we obtained using our approach. 

 

As we said in the beginning, we need to extract the proper point cloud, which will represent a 

smooth surface, out of the original point cloud in order to satisfy the high-order application. A given 

point cloud may represent a surface which has many singularities. For such point clouds, some pre-

processing is necessary. 

For the above given set of data, we extracted the following point clouds and got the following results 

[The following figures depict the following: (a) shows the point cloud extracted (b) shows the point 

of orthogonal projection (red) for each point in the point cloud (c) shows the corresponding directed 

distance smooth surface obtained via Fourier Continuation Analysis and (d) shows the 

parameterizations of the surface (smooth) obtained for the extracted point cloud] 
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                Figure 4.8(a)              Figure 4.8(b)          Figure 4.8(c) 

                                                                                       
                             Figure 4.8(d)      

                                              

          Figure 4.9(a)                                 Figure 4.9(b)            Figure 4.9(c) 

 

                                                            

                                                     Figure 4.9(d) 

 

The above point clouds were extracted because of the singular points on the surface. 
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          Figure 4.10(a)                                 Figure 4.10(b)            Figure 4.10(c) 

 

                                                                                         
                                                                                                                                Figure 4.10(d) 

 

Another singular point on the surface which doesn’t will not let the distance surface to be 

continuous if not extracted out. A similar singular point occurs on lower side also. 

 
 

             
                 Figure 4.11(a)                         Figure 4.11(b)                  Figure 4.11(c) 

 
 

                                                             
                                                                  Figure 4.11(d) 
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        Figure 4.12(a)                                     Figure 4.12(b)             Figure 4.12(c) 

 

                                                            

                                                                Figure 4.12(c) 

 

[NOTE: The point clouds extracted must have some data in common so that when we finally plot the 

surfaces corresponding to each point cloud together, we get a continuous surface.] 

 

                
          Figure 4.13(a)                              Figure 4.13(b)                          Figure 4.13(c) 

 

                                                                                                      

               Figure 4.13(b)  
 

This point cloud is extracted so that we can make smooth connection between the singular point 

surface and the surface in Figure 4.12(d).  
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             Figure 4.14(a)                    Figure 4.14(b)            Figure 4.14(c) 
 

                                                                                                            

          Figure 4.14(d) 
 

This front section was extracted out because of the singular point at the top and bottom of the  

Surface and this act as the connector between two and the back surface. We always keep some 

point cloud extra at the edges so that we can have a continuous surface in the end. After plotting the 

surfaces corresponding to each extracted point cloud together, we obtained a final surface 

representation for the complete original point cloud as shown in Figure 4.15 
 

 

                         Figure 4.15 

 

When we plot all the surfaces together, the overlap at the boundaries may not be complete [1]. 

There is some error for which blending of surfaces is done and has not been focused in this report. 

 

5      Implementation results of our approach on Falcon Aircraft       

         We aim at creating the full surface high-order surface parameterizations for this point cloud automatically 

     and efficiently. In this report, we show the surface parameterizations we obtained for the engines and the 

     fuselage of the plane. 
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                  Figure 5.1: Original point cloud of Falcon Aircraft 

        Similar to the previous demonstration, we pre-processed the point cloud of Falcon aircraft and following are

        the results we obtained: 

                                       

                 Figure 5.2(a)       Figure 5.2(b) 

                          

                     Figure 5.3(a)               Figure 5.3(b) 
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                                             Figure 5.4(a)               Figure 5.4(b) 

   

Figure 5.2(b), 5.3(b) and 5.4(b) when overlapped; give the complete fuselage of Falcon aircraft. The fuselage 

has singularities at the very start and the end of surface. To obtain smooth surface parameterizations for 

those parts, we can extract their point cloud and find smooth surface parameterizations for them separately. 

Above figures are actually the overlaps of resulting patches.  

 

                

                                    Figure 5.5(a)               Figure 5.5(b) 

                 

                 Figure 5.6(a)                         Figure 5.6(b) 
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Figure 5.7 

   Figure 5.7 is the result of overlap of figure 5.5(b) and figure 5.6(b) which are the interior and exterior parts 

    respectively, of the engines. For the front portion of engine, none of the projection surfaces (ellipsoid, 

   hyperboloid or paraboloid) is a good projection surface. So we implemented a different class of curves,           

   Surface of revolution (SOR). In this case, the SOR is a parabola rotated about an axis passing through the center

   of engine (the process automating the selection of a good surface of revolution & generalizing it, is in progress).  

Following figures show our implementation of surface of revolution for the engine front portion. Once we know 

the parametric form of surface of revolution, we follow our approach of projecting the points on the surface 

and finding the surface parameterization for the given/extracted point cloud. 

    

            Figure 5.8(a)    Figure 5.8(b)          Figure 5.8(c) 

Figure 5.8(a) shows the given point cloud for the front part of the engine. Figure 5.8(b) shows the selected 

surface of revolution along with the original point cloud (black points). Figure 5.8(c) shows the final surface 

obtained after applying projection and continuation algorithm Section 3. Figure 5.9 shows the overlap of figure 

5.5(b), 5.6(b) and 5.8(c) to obtain the complete engine. 
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Figure 5.9 

 

After overlapping the surfaces in figure 5.2(b), 5.3(b), 5.4(b), 5.5(b), 5.6(b) and 5.8(c), we obtain the final surface 

parameterization for the fuselage and engines as shown in Figure 5.10. 

 

               

 

 

 

 

 

 

Figure 5.10 
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6      Conclusions and Future Work 

6.1 Summary and Concluding Remarks 

In this report, we presented an algorithm for making the intermediate process of finding good projection 

surface automatic. We demonstrated results of implementation of our approach for a randomly generated 

point cloud on a known surface and for the given point cloud of engines and fuselage of Falcon aircraft. 

We interpolate the given point cloud by quadratic curves using the method of Least Squares and use Single 

value decomposition method to find the solution to the resulting homogeneous system of equations. Once 

we know the quadratic surfaces, we find their parametric form using the algorithm presented in section 4.3. 

After that, we project the given point cloud orthogonally on the projection surface and find the directed 

distance of each point from the point of projection. An algorithm for doing this efficiently has been presented 

in section 4.4. We then use Fourier Continuation method to find the smooth function for discrete directed 

distance point cloud and then we find the surface parameterization for the given point cloud. For this process 

to work, we need to pre-process the given point cloud to satisfy the requirements as we extracted the point 

cloud of singularity in our demonstration of 2-Dimensional function in section 4. For the front of engine of 

falcon aircraft, we implemented a different class of projection surface – surface of revolutions. (The process 

of generalization of SOR for any point cloud is in progress as mentioned in future directions). 

6.2 Future Directions 

• Automating the pre-processing of point cloud i.e. given a point cloud, extracting the point in 

cloud which will represent a smooth surface of piecewise smooth surface. (This takes into 

account dealing with geometric singularities). 

• Implementation of all possible surfaces of revolution and finding an algorithm for selecting a 

suitable SOR for a given point cloud automatically. 

• When the different patches of surface are overlapped, the overlapping may not be exact [1]. 

For this, we need to develop an algorithm to properly blend the surfaces of singularity. 
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