Practice problems 1: The Real Number System

1. Let $x_{0} \in \mathbb{R}$ and $x_{0} \geq 0$. If $x_{0}<\epsilon$ for every positive real number ϵ, show that $x_{0}=0$.
2. Prove Bernoulli's inequality: for $x>-1,(1+x)^{n} \geq 1+n x$ for all $n \in \mathbb{N}$.
3. Let E be a non-empty bounded above subset of \mathbb{R}. If α and β are supremums of E, show that $\alpha=\beta$.
4. Suppose that α and β are any two real numbers satisfying $\alpha<\beta$. Show that there exists $n \in \mathbb{N}$ such that $\alpha<\alpha+\frac{1}{n}<\beta$. Similarly, show that for any two real numbers s and t satisfying $s<t$, there exists $n \in \mathbb{N}$ such that $s<t-\frac{1}{n}<t$.
5. Let A be a non-empty subset of \mathbb{R} and $\alpha \in \mathbb{R}$ be an upper bound of A. Suppose for every $n \in \mathbb{N}$, there exists $a_{n} \in A$ such that $a_{n} \geq \alpha-\frac{1}{n}$. Show that α is the supremum of A.
6. Find the supremum and infimum of the set $\left\{\frac{m}{|m|+n}: n \in \mathbb{N}, m \in \mathbb{Z}\right\}$.
7. Let E be a non-empty bounded above subset of \mathbb{R}. If $\alpha \in \mathbb{R}$ is an upper bound of E and $\alpha \in E$, show that α is the l.u.b. of E.
8. Let $x \in \mathbb{R}$. Show that there exists an integer m such that $m \leq x<m+1$ and an integer l such that $x<l \leq x+1$.
9. Let A be a non empty subset of \mathbb{R} and $x \in \mathbb{R}$. Define the distance $d(x, A)$ between x and A by $d(x, A)=\inf \{|x-a|: a \in A\}$. If $\alpha \in \mathbb{R}$ is the l.u.b. of A, show that $d(\alpha, A)=0$.
10. (*)
(a) Let $x \in \mathbb{Q}$ and $x>0$. If $x^{2}<2$, show that there exists $n \in \mathbb{N}$ such that $\left(x+\frac{1}{n}\right)^{2}<2$. Similarly, if $x^{2}>2$, show that there exists $n \in \mathbb{N}$ such that $\left(x-\frac{1}{n}\right)^{2}>2$.
(b) Show that the set $A=\left\{r \in \mathbb{Q}: r>0, r^{2}<2\right\}$ is bounded above in \mathbb{Q} but it does not have the l.u.b. in \mathbb{Q}.
(c) From (b), conclude that \mathbb{Q} does not posses the l.u.b. property.
(d) Let A be the set defined in (b) and $\alpha \in \mathbb{R}$ such that $\alpha=\sup A$. Show that $\alpha^{2}=2$.
11. (*) For a subset A of \mathbb{R}, define $-A=\{-x: x \in A\}$. Suppose that S is a nonempty bounded above subset of \mathbb{R}.
(a) Show that $-S$ is bounded below.
(b) Show that $\inf (-S)=-\sup (S)$.
(c) From (b) conclude that the l.u.b. property of \mathbb{R} implies the g.l.b. property of \mathbb{R} and vice versa.
12. (*) Let k be a positive integer and $x=\sqrt{k}$. Suppose x is rational and $x=\frac{m}{n}$ such that $m \in \mathbb{Z}$ and n is the least positive integer such that $n x$ is an integer. Define $n^{\prime}=n(x-[x])$ where $[x]$ is the integer part of x.
(a) Show that $0 \leq n^{\prime}<n$ and $n^{\prime} x$ is an integer.
(b) Show that $n^{\prime}=0$.
(c) From (a) and (b) conclude that \sqrt{k} is either a positive integer or irrational.

Hints/Solutions

1. Suppose $x_{0} \neq 0$. Then for $\epsilon_{0}=\frac{x_{0}}{2}, x_{0}>\epsilon_{0}>0$ which is a contradiction.
2. Use Mathematical induction.
3. Since α is a l.u.b. of E and β is an u.b. of $E, \alpha \leq \beta$. Similarly $\beta \leq \alpha$.
4. Since $\beta-\alpha>0$, by Archimedian property, there exists $n \in \mathbb{N}$ such that $n>\frac{1}{\beta-\alpha}$.
5. If α is not the l.u.b then there exists an u.b. β of A such that $\beta<\alpha$. Find $n \in \mathbb{N}$ such that $\beta<\alpha-\frac{1}{n}$. Since $\exists a_{n} \in A$ such that $\alpha-\frac{1}{n}<a_{n}, \beta$ is not an u.b. which is a contradiction.
6. $\sup =1$ and $\inf =-1$.
7. If α is not the l.u.b. of E, then there exists an u.b. β of E such that $\beta<\alpha$. But $\alpha \in E$ which contradicts the fact that β is an u.b. of E.
8. Using the Archimedian property, find $m, n \in \mathbb{N}$ such that $-m<x<n$. Let $[x]$ be the largest integer between $-m$ and n such that $[x] \leq x$. So, $[x] \leq x<[x]+1$. This implies that $x<[x]+1 \leq x+1$. Take $l=[x]+1 .([x]$ is called the integer part of $x)$.
9. If $d(\alpha, A)>0$, then find $\epsilon \in \mathbb{R}$ such that $0<\epsilon<d(\alpha, A)$. So $\alpha-a>\epsilon$ for all $a \in A$. That is $a<\alpha-\epsilon$ for all $a \in A$. Hence $\alpha-\epsilon$ is an u.b. of A which is contradiction.
10. (a) Suppose $x^{2}<2$. Observe that $\left(x+\frac{1}{n}\right)^{2}<x^{2}+\frac{1}{n}+\frac{2 x}{n}$ for any $n \in \mathbb{N}$. Using the Archimedian property, find n such that $x^{2}+\frac{1}{n}+\frac{2 x}{n}<2$. This n will do.
(b) Note that 2 is an u.b. of A. If $m \in \mathbb{Q}$ such that $m=\sup A$, then there are three possibilities: i. $m^{2}<2$ ii. $m^{2}=2$ iii. $m^{2}>2$. Using (a) show that this is not possible.
(c) The set A defined in (b) is bounded above in \mathbb{Q} but does not have the l.u.b. in \mathbb{Q}.
(d) Using (a), justify that the following cases cannot occur: (i) $\alpha^{2}<2$ and (ii) $\alpha^{2}>2$.
11. (a) Trivial.
(b) Let $\alpha=\sup S$. We claim that $-\alpha=\inf (-S)$. Since $\alpha=\sup S, a \leq \alpha$ for all $a \in S$. This implies that $-a \geq-\alpha$ for all $a \in S$. Hence $-\alpha$ is a l.b. of $-S$. If $-\alpha$ is not the g.l.b.of $-S$ then there exists a lower bound β of A such that $-\alpha<\beta$. Verify that $-\beta$ is an u.b. of S and $-\beta<\alpha$ which is a contradiction.
(c) Assume that \mathbb{R} has the l.u.b. property and S is a non empty bounded below set. Then from (b) or the proof of (b), we conclude that $\inf S$ exists and is equal to $-\sup (-S)$.
12. Trivial.
