Practice Problems 10 : Taylor's Theorem

- 1. Let $f:[a,b]\to\mathbb{R}$ and n be a non-negative integer. Suppose that $f^{(n+1)}$ exists on [a,b]. Show that f is a polynomial of degree \leq n if $f^{(n+1)}(x)=0$ for all $x\in[a,b]$. Observe that the statement for n=0 can be proved by the mean value theorem.
- 2. Show that $1 + \frac{x}{2} \frac{x^2}{8} \le \sqrt{1+x} \le 1 + \frac{x}{2}$ for x > 0.
- 3. Show that for x > 0, $|\ln(1+x) \left(x \frac{x^2}{2} + \frac{x^3}{3}\right)| \le \frac{x^4}{4}$.
- 4. Show that for $x \in \mathbb{R}$ with $|x|^5 < \frac{5!}{10^4}$, we can replace $\sin x$ by $x \frac{x^3}{6}$ with an error of magnitude less than or equal to 10^{-4} .
- 5. Prove the binomial expansion: $(1+x)^n = 1 + nx + \frac{n(n-1)}{2!}x^2 + \dots + x^n, \ x \in \mathbb{R}$
- 6. Using Taylor's theorem compute $\lim_{x\to 0} \frac{1-\sqrt{1+x^2\cos x}}{x^4}$.
- 7. (a) Let $f:[a,b] \to \mathbb{R}$ be such that $f''(x) \ge 0$ for all $x \in [a,b]$. Suppose $x_0 \in [a,b]$. Show that for any $x \in [a,b]$

$$f(x) \ge f(x_0) + f'(x_0)(x - x_0)$$

i.e., the graph of f lies above the tangent line to the graph at $(x_0, f(x_0))$.

- (b) Show that $\cos y \cos x \ge (x y)\sin x$ for all $x, y \in \left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$.
- 8. (a) Let $f:[a,b] \to \mathbb{R}$ be such that $f''(x) \ge 0$ for all $x \in [a,b]$. Suppose that $x,y \in (a,b)$, x < y and $0 < \lambda < 1$. Show that

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$$

i.e., the chord joining the two points (x, f(x)) and (y, f(y)) lies above the portion of the graph $\{(z, f(z)) : z \in (x, y)\}.$

- (b) Show that $\lambda \sin x \le \sin \lambda x$ for all $x \in [0, \pi]$ and $0 < \lambda < 1$.
- 9. Let $f:[a,b]\to\mathbb{R}$ be twice differentiable. Suppose f'(a)=f'(b)=0. Show that there exist $c_1,c_2\in(a,b)$ such that $|f(b)-f(a)|=\left(\frac{b-a}{2}\right)^2\frac{1}{2}|f''(c_1)-f''(c_2)|$.
- 10. Let $f: \mathbb{R} \to \mathbb{R}$ be such that f'''(x) > 0 for all $x \in \mathbb{R}$. Suppose that $x_1, x_2 \in \mathbb{R}$ and $x_1 < x_2$. Show that $f(x_2) f(x_1) > f'\left(\frac{x_1 + x_2}{2}\right)(x_2 x_1)$.
- 11. Let f be a twice differentiable function on \mathbb{R} such that $f''(x) \geq 0$ for all $x \in \mathbb{R}$. Show that if f is bounded then it is a constant function.
- 12. (a) For a positive integer n, show that there exists $c \in (0,1)$ such that

$$e = 1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{e^c}{(n+1)!}.$$

Further show that $\frac{e^c}{n+1} = n!e - m$ for some integer m.

- (b) (*) Show that e is an irrational number.
- 13. (*) Let $f: \mathbb{R} \to \mathbb{R}$ be such that $f''(x) \geq 0$ for all $x \in \mathbb{R}$. Suppose f is strictly increasing and $f(\overline{x}) = 0$. Let $x_0 > \overline{x}$ and (x_n) be the sequence generated by Newton's algorithm with the initial point x_0 .
 - (a) Show that $f'(x_0) > 0$.
 - (b) Show that (x_n) converges.

Practice Problems 10: Hints/Solutions

- 1. Take any $x \in (a, b]$ and apply Taylor's Theorem for f on [a, x]. We get that $f(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + ... + \frac{f^{(n)}(a)}{n!}(x-a)^n$ which is a polynomial of degree $\leq n$.
- 2. By Taylor's theorem there exists $c \in (0,x)$ such that $\sqrt{1+x} = 1 + \frac{x}{2} \frac{1}{8} \frac{x^2}{(1+c)^{3/2}}$.
- 3. By Taylor's theorem there exists $c \in (0, x)$ such that $\ln(1+x) = x \frac{x^2}{2} + \frac{x^3}{3} \frac{x^4}{4(1+c)^4}$.
- 4. There exists $c \in (0, x)$ such that $\sin x = x \frac{x^3}{3!} + (\cos c) \frac{x^5}{5!}$. If $|x|^5 < \frac{5!}{10^4}$, then $|\sin x \left(x \frac{x^3}{6}\right)| \le 10^{-4}$.
- 5. Apply Taylor's theorem for $f(x) = x^n$ on [1, 1+x] when x > 0 and [1+x, 1] when x < 0.
- 6. Observe from Taylor's theorem that $\sqrt{1+x^2}=1+\frac{x^2}{2}-\frac{x^4}{8}+\alpha x^6$ and $\cos x=1-\frac{x^2}{2}+\frac{x^4}{24}+\beta x^5$ for some α and β in \mathbb{R} . The limit is $\frac{1}{3}$.
- 7. (a) There exists c between x_0 and x such that $f(x) = f(x_0) + f'(x_0)(x x_0) + \frac{(x x_0)^2}{2}f''(c)$. This implies the required inequality.
 - (b) Take $f(x) = \cos x$ on $\left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$ and apply the inequality given in (a).
- 8. (a) Let $x_{\lambda} = \lambda x + (1 \lambda)y$. By Problem 7(a), $f(x) \geq f(x_{\lambda}) + f'(x_{\lambda})(1 \lambda)(x y)$ and $f(y) \geq f(x_{\lambda}) + f'(x_{\lambda})\lambda(y x)$. Eliminate $f'(x_{\lambda})$.
 - (b) Take $f(x) = -\sin x$ on $[0, \pi]$ and apply the inequality given in (a).
- 9. By Taylor's theorem $f\left(\frac{a+b}{2}\right) = f(a) + \frac{f''(c_1)}{2}\left(\frac{b-a}{2}\right)^2$ and $f\left(\frac{a+b}{2}\right) = f(b) + \frac{f''(c_2)}{2}\left(\frac{b-a}{2}\right)^2$ for some $c_1, c_2 \in (a, b)$. Eliminate $f\left(\frac{a+b}{2}\right)$.
- 10. Let $\overline{x} = \frac{x_1 + x_2}{2}$. Since f'''(x) > 0 for all $x \in \mathbb{R}$, by Taylor's theorem $f(x_2) > f(\overline{x}) + f'(\overline{x})(x_2 \overline{x}) + \frac{f''(\overline{x})}{2}(x_2 \overline{x})^2$ and $f(x_1) < f(\overline{x}) + f'(\overline{x})(x_1 \overline{x}) + \frac{f''(\overline{x})}{2}(x_2 \overline{x})^2$. Eliminate $f(\overline{x})$ and $\frac{f''(\overline{x})}{2}(x_2 \overline{x})^2$.
- 11. Suppose $f'(x_0) > 0$ for some $x_0 \in \mathbb{R}$. Since $f''(x) \geq 0$ for all $x \in \mathbb{R}$, by Problem 7(a), $f(x) \geq f(x_0) + f'(x_0)(x x_0) \to \infty$ as $x \to \infty$. This contradicts the fact that f is bounded.
- 12. (a) For $f(x) = e^x$ on [0,1], by Taylor's theorem, there exists $c \in (0,1)$ such that $e = 1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{e^c}{(n+1)!}$. Multiply both sides by n! to get $\frac{e^c}{n+1} = n!e m$ for some integer m
 - (b) If $e = \frac{p}{q}$ for some $p \in \mathbb{Z}$ and $q \in \mathbb{N}$, then by (a), $\left(\frac{p}{q}\right)^c \frac{1}{n+1} = n! \frac{p}{q} m$. Since $n! \frac{p}{q} m$ is an integer for $n \geq q$, $\left(\frac{p}{q}\right)^c \frac{1}{n+1}$ is a natural number for every $n \geq q$. But $\left(\frac{p}{q}\right)^c \frac{1}{n+1} \to 0$ as $n \to \infty$ which is a contradiction.
- 13. (a) Observe that $f'(x) \geq 0 \ \forall \ x \in \mathbb{R}$ because f is strictly increasing. Note that f' is also increasing. If $f'(x_0) = 0$, then $f'(x) = 0 \ \forall \ x \leq x_0$. That is f is constant on $(-\infty, x_0]$ which is not true.
 - (b) Since $x_1 = x_0 \frac{f(x_0)}{f'(x_0)}$, by (a), $x_1 \le x_0$. By Problem 7(a), $f(x_1) f(x_0) \ge f'(x_0)(x_1 x_0) = -f(x_0)$ and hence $f(x_1) \ge 0$. Therefore $\overline{x} \le x_1 \le x_0$. Similarly we can show that $\overline{x} \le ... \le x_n \le ... \le x_2 \le x_1 \le x_0$. Therefore the sequence (x_n) is decreasing and bounded below.