
Practice Problems 10 : Taylor’s Theorem

1. Let f : [a, b] → R and n be a non-negative integer. Suppose that f (n+1) exists on [a, b].
Show that f is a polynomial of degree ≤ n if f (n+1)(x) = 0 for all x ∈ [a, b]. Observe that
the statement for n = 0 can be proved by the mean value theorem.

2. Show that 1 + x
2 −

x2

8 ≤
√

1 + x ≤ 1 + x
2 for x > 0.

3. Show that for x > 0, | ln(1 + x)−
(
x− x2

2 + x3

3

)
| ≤ x4

4 .

4. Show that for x ∈ R with |x|5 < 5!
104

, we can replace sinx by x − x3

6 with an error of
magnitude less than or equal to 10−4.

5. Prove the binomial expansion: (1 + x)n = 1 + nx+ n(n−1)
2! x2 + ...+ xn, x ∈ R

6. Using Taylor’s theorem compute lim
x→0

1−
√
1+x2 cosx
x4

.

7. (a) Let f : [a, b]→ R be such that f ′′(x) ≥ 0 for all x ∈ [a, b]. Suppose x0 ∈ [a, b]. Show
that for any x ∈ [a, b]

f(x) ≥ f(x0) + f ′(x0)(x− x0)
i.e., the graph of f lies above the tangent line to the graph at (x0, f(x0)).

(b) Show that cos y − cosx ≥ (x− y) sinx for all x, y ∈ [π2 ,
3π
2 ].

8. (a) Let f : [a, b]→ R be such that f ′′(x) ≥ 0 for all x ∈ [a, b]. Suppose that x, y ∈ (a, b),
x < y and 0 < λ < 1. Show that

f (λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

i.e., the chord joining the two points (x, f(x)) and (y, f(y)) lies above the portion of
the graph {(z, f(z)) : z ∈ (x, y)}.

(b) Show that λ sinx ≤ sinλx for all x ∈ [0, π] and 0 < λ < 1.

9. Let f : [a, b] → R be twice differentiable. Suppose f ′(a) = f ′(b) = 0. Show that there

exist c1, c2 ∈ (a, b) such that |f(b)− f(a)| =
(
b−a
2

)2 1
2 |f

′′(c1)− f ′′(c2)|.

10. Let f : R→ R be such that f ′′′(x) > 0 for all x ∈ R. Suppose that x1, x2 ∈ R and x1 < x2.
Show that f(x2)− f(x1) > f ′

(
x1+x2

2

)
(x2 − x1).

11. Let f be a twice differentiable function on R such that f ′′(x) ≥ 0 for all x ∈ R. Show that
if f is bounded then it is a constant function.

12. (a) For a positive integer n, show that there exists c ∈ (0, 1) such that

e = 1 +
1

1!
+

1

2!
+ ...+

ec

(n+ 1)!
.

Further show that ec

n+1 = n!e−m for some integer m.

(b) (*) Show that e is an irrational number.

13. (*) Let f : R → R be such that f ′′(x) ≥ 0 for all x ∈ R. Suppose f is strictly increasing
and f(x) = 0. Let x0 > x and (xn) be the sequence generated by Newton’s algorithm with
the initial point x0.

(a) Show that f ′(x0) > 0.

(b) Show that (xn) converges.



Practice Problems 10: Hints/Solutions

1. Take any x ∈ (a, b] and apply Taylor’s Theorem for f on [a, x]. We get that f(x) =

f(a) + f ′(a)(x− a) + f ′′(a)
2! (x− a)2 + ...+ f (n)(a)

n! (x− a)n which is a polynomial of degree
≤ n.

2. By Taylor’s theorem there exists c ∈ (0, x) such that
√

1 + x = 1 + x
2 −

1
8

x2

(1+c)3/2
.

3. By Taylor’s theorem there exists c ∈ (0, x) such that ln(1 + x) = x− x2

2 + x3

3 −
x4

4(1+c)4
.

4. There exists c ∈ (0, x) such that sinx = x− x3

3! + (cos c)x
5

5! . If |x|5 < 5!
104

, then

| sinx−
(
x− x3

6

)
| ≤ 10−4.

5. Apply Taylor’s theorem for f(x) = xn on [1, 1 + x] when x > 0 and [1 + x, 1] when x < 0.

6. Observe from Taylor’s theorem that
√

1 + x2 = 1+x2

2 −
x4

8 +αx6 and cosx = 1−x2

2 +x4

24+βx5

for some α and β in R. The limit is 1
3 .

7. (a) There exists c between x0 and x such that f(x) = f(x0)+f ′(x0)(x−x0)+ (x−x0)2
2 f ′′(c).

This implies the required inequality.

(b) Take f(x) = cosx on [π2 ,
3π
2 ] and apply the inequality given in (a).

8. (a) Let xλ = λx + (1 − λ)y. By Problem 7(a), f(x) ≥ f(xλ) + f ′(xλ)(1 − λ)(x − y) and
f(y) ≥ f(xλ) + f ′(xλ)λ(y − x). Eliminate f ′(xλ).

(b) Take f(x) = − sinx on [0, π] and apply the inequality given in (a).

9. By Taylor’s theorem f
(
a+b
2

)
= f(a) + f ′′(c1)

2

(
b−a
2

)2
and f

(
a+b
2

)
= f(b) + f ′′(c2)

2

(
b−a
2

)2
for

some c1, c2 ∈ (a, b). Eliminate f
(
a+b
2

)
.

10. Let x = x1+x2
2 . Since f ′′′(x) > 0 for all x ∈ R, by Taylor’s theorem f(x2) > f(x) +

f ′(x)(x2−x)+ f ′′(x)
2 (x2−x)2 and f(x1) < f(x)+f ′(x)(x1−x)+ f ′′(x)

2 (x2−x)2. Eliminate

f(x) and f ′′(x)
2 (x2 − x)2.

11. Suppose f ′(x0) > 0 for some x0 ∈ R. Since f ′′(x) ≥ 0 for all x ∈ R, by Problem 7(a),
f(x) ≥ f(x0)+f ′(x0)(x−x0)→∞ as x→∞. This contradicts the fact that f is bounded.

12. (a) For f(x) = ex on [0, 1], by Taylor’s theorem, there exists c ∈ (0, 1) such that e =
1 + 1

1! + 1
2! + ...+ ec

(n+1)! . Multiply both sides by n! to get ec

n+1 = n!e−m for some integer
m.

(b) If e = p
q for some p ∈ Z and q ∈ N, then by (a),

(
p
q

)c
1

n+1 = n!pq −m. Since n!pq −m

is an integer for n ≥ q,
(
p
q

)c
1

n+1 is a natural number for every n ≥ q. But
(
p
q

)c
1

n+1 → 0

as n→∞ which is a contradiction.

13. (a) Observe that f ′(x) ≥ 0 ∀ x ∈ R because f is strictly increasing. Note that f ′ is also
increasing. If f ′(x0) = 0, then f ′(x) = 0 ∀ x ≤ x0. That is f is constant on (−∞, x0]
which is not true.

(b) Since x1 = x0− f(x0)
f ′(x0)

, by (a), x1 ≤ x0. By Problem 7(a), f(x1)− f(x0) ≥ f ′(x0)(x1−
x0) = −f(x0) and hence f(x1) ≥ 0. Therefore x ≤ x1 ≤ x0. Similarly we can show that
x ≤ ... ≤ xn ≤ ... ≤ x2 ≤ x1 ≤ x0. Therefore the sequence (xn) is decreasing and bounded
below.


