Practice Problems 11 : Series: Definition of convergence, Necessary and sufficient conditions for convergence, Absolute convergence.

- 1. Show that $\sum_{n=1}^{\infty} a_n$ converges if and only if $\sum_{n=p}^{\infty} a_n$ converges for any $p \in \mathbb{N}$.
- 2. Show that $\sum_{n=1}^{\infty} (a_n + b_n)$ converges if $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ converge.
- 3. Show that every sequence is a sequence of partial sums of a series.
- 4. Show that $\sum_{n=1}^{\infty} (a_n a_{n+1})$ converges if and only if the sequence (a_n) converges. Verify the convergence/divergence of the following series:
 - (a) $\sum_{n=1}^{\infty} \frac{4}{(4n-3)(4n+1)}$
 - (b) $\sum_{n=1}^{\infty} \frac{2n+1}{n^2(n+1)^2}$
- 5. Show that the series $\frac{1}{2} + \frac{1}{3} + \frac{2}{3} + \frac{1}{4} + \frac{2}{4} + \frac{3}{4} + \frac{1}{5} + \frac{2}{5} + \frac{3}{5} + \frac{4}{5} + \frac{1}{6} + \frac{2}{6} + \dots$ diverges.
- 6. Let (a_n) be a sequence such that $a_n > 0$ and $a_n \le a_{2n} + a_{2n+1}$ for all $n \in \mathbb{N}$. Show that the series $\sum_{n=1}^{\infty} a_n$ diverges.
- 7. Consider the sequence 0.2, 0.22, 0.222, 0.2222. By writing this sequence as a sequence of partial sums of a series, find the limit of this sequence.
- 8. Let $\sum_{n=1}^{\infty} a_n$ converge and $a_n > 0$ for all n. If (a_{n_k}) is a subsequence of (a_n) , show that $\sum_{k=1}^{\infty} a_{n_k}$ also converges.
- 9. Show that the series $\sum_{n=1}^{\infty} a_n$ converges if and only if for every $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that $|\sum_{i=m}^{n} a_i| < \epsilon$ for all $m, n \in \mathbb{N}$ satisfying $n \geq m \geq N$.
- 10. Let $\sum_{n=1}^{\infty} a_n$ be a convergent series. Consider $\sum_{n=1}^{\infty} b_n$ and $\sum_{n=1}^{\infty} c_n$ where $b_n = \max\{a_n, 0\}$ and $c_n = \min\{a_n, 0\}$ (i.e., series of positive terms and series of negative terms of $\sum_{n=1}^{\infty} a_n$).
 - (a) If $\sum_{n=1}^{\infty} |a_n|$ converges then show that both $\sum_{n=1}^{\infty} b_n$ and $\sum_{n=1}^{\infty} c_n$ converge.
 - (b) If $\sum_{n=1}^{\infty} |a_n|$ diverges then show that both $\sum_{n=1}^{\infty} b_n$ and $\sum_{n=1}^{\infty} c_n$ diverge.
- 11. Let $\sum_{n=1}^{\infty} a_n$ be a convergent series and $\sum_{n=1}^{\infty} b_n$ is obtained by grouping finite number of terms of $\sum_{n=1}^{\infty} a_n$ such as $(a_1 + a_2 + ... + a_{m_1}) + (a_{m_1+1} + a_{m_1+2} + ... + a_{m_2}) + ...$ for some $m_1, m_2, ...$ (Here $b_1 = a_1 + a_2 + ... + a_{m_1}$, $b_2 = a_{m_1+1} + a_{m_1+2} + + a_{m_2}$ and so on). Show that $\sum_{n=1}^{\infty} b_n$ converges and has the same limit as $\sum_{n=1}^{\infty} a_n$. What happens if $\sum_{n=1}^{\infty} a_n$ diverges?
- 12. Let $a_n \geq 0$ for all $n \in \mathbb{N}$ and $\sum_{n=1}^{\infty} a_n$ be a convergent series. Suppose $\sum_{n=1}^{\infty} b_n$ is obtained by rearranging the terms of $\sum_{n=1}^{\infty} a_n$ (i.e., the terms of $\sum_{n=1}^{\infty} b_n$ are same as those of $\sum_{n=1}^{\infty} a_n$ but they occur in different order). Show that $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ converge to the same limit.
- 13. Consider the series $\sum_{n=1}^{\infty} a_n$ where $a_n = \frac{(-)^{n+1}}{n}$. Show that the series

$$(1 - \frac{1}{2}) - \frac{1}{4} + (\frac{1}{3} - \frac{1}{6}) - \frac{1}{8} + (\frac{1}{5} - \frac{1}{10}) - \frac{1}{12} + \dots,$$

which is obtained from $\sum_{n=1}^{\infty} a_n$ by rearranging and grouping, is $\frac{1}{2} \sum_{n=1}^{\infty} a_n$.

14. (*) Consider the series $\sum_{n=1}^{\infty} a_n$ where $a_n = \frac{(-)^{n+1}}{n}$. Let $\alpha \in \mathbb{R}$; for example take $\alpha = 2013$.

- (a) Show that there exists a smallest odd positive integer N_1 such that $1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{N_1}>2013$. Further show that $1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{N_1}-\frac{1}{2}\leq 2013$.
- (b) Show that there exists a smallest odd positive integer $N_2 > N_1$ such that

$$1 + \frac{1}{3} + \frac{1}{5} + \dots + \frac{1}{N_1} - \frac{1}{2} + \frac{1}{N_1 + 2} + \dots + \frac{1}{N_2} > 2013.$$

Further show that $1 + \frac{1}{3} + \frac{1}{5} + \dots + \frac{1}{N_1} - \frac{1}{2} + \frac{1}{N_1 + 2} + \dots + \frac{1}{N_2} - \frac{1}{4} \le 2013$.

- (c) Show that $0 \le \left(1 + \frac{1}{3} + \frac{1}{5} + \dots + \frac{1}{N_1} \frac{1}{2} + \frac{1}{N_1 + 2} + \dots + \frac{1}{N_2}\right) 2013 \le \frac{1}{N_2}$ and $0 \le 2013 \left(1 + \frac{1}{3} + \frac{1}{5} + \dots + \frac{1}{N_1} \frac{1}{2} + \frac{1}{N_1 + 2} + \dots + \frac{1}{N_2} \frac{1}{4}\right) \le \frac{1}{4}$.
- (d) Following (b), consider the series of rearrangement

$$1 + \frac{1}{3} + \frac{1}{5} + \dots + \frac{1}{N_1} - \frac{1}{2} + \frac{1}{N_1 + 2} + \dots + \frac{1}{N_2} - \frac{1}{4} + \frac{1}{N_2 + 2} + \dots + \frac{1}{N_3} - \frac{1}{6} + \dots$$

Show that

$$\left(1+\tfrac{1}{3}+\tfrac{1}{5}+\ldots+\tfrac{1}{N_1}-\tfrac{1}{2}+\tfrac{1}{N_1+2}+\ldots+\tfrac{1}{N_2}-\tfrac{1}{4}+\tfrac{1}{N_2+2}+\ldots+\tfrac{1}{N_3}\right)-2013\leq \tfrac{1}{N_3}.$$

Further, for any j such that $N_2 + 2 \le N_2 + 2j \le N_3 - 2$, show that

$$2013 - \left(1 + \frac{1}{3} + \frac{1}{5} + \dots + \frac{1}{N_1} - \frac{1}{2} + \frac{1}{N_1 + 2} + \dots + \frac{1}{N_2} - \frac{1}{4} + \frac{1}{N_2 + 2} + \dots + \frac{1}{N_2 + 2j}\right) \le \frac{1}{4}.$$

- (e) Show that the series of rearrangement given in (d) converges to 2013.
- 15. (*) Let (A_n) and (S_n) be the sequences of partial sums of the series $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} \frac{a_n}{n}$ respectively. If $\sum_{n=1}^{\infty} a_n$ is convergent or the sequence of partial sums (A_n) is bounded then show that

(a)
$$S_n = A_1(\frac{1}{1} - \frac{1}{2}) + A_2(\frac{1}{2} - \frac{1}{3}) + \dots + A_n(\frac{1}{n} - \frac{1}{n+1}) + \frac{A_n}{n+1}$$
, for $n > 1$,

- (b) the series $|A_1(\frac{1}{1} \frac{1}{2})| + |A_2(\frac{1}{2} \frac{1}{3})| + \dots + |A_n(\frac{1}{n} \frac{1}{n+1})| + \dots$ converges,
- (c) the series $\sum_{n=1}^{\infty} \frac{a_n}{n}$ converges.

Practice Problems 11: Hints/Solutions

- 1. Let (S_n) be the sequence of partial sums of $\sum_{n=p}^{\infty} a_n$. Then for all n > p, the nth term of the sequence of partial sum of $\sum_{n=1}^{\infty} a_n$ is $a_1 + a_2 + ... + a_{p-1} + S_n$. Use the definition of the convergence of a series.
- 2. Use the definition of the convergence of a series.
- 3. Let (a_n) be the given sequence. Consider the series $a_1 + (a_2 a_1) + (a_3 a_2) + \dots$
- 4. Note that the sequence of partial sums of the series $\sum_{n=1}^{\infty} (a_n a_{n+1})$ is $(a_1 a_n)$.
- 5. The nth term of the series does not converge to 0.
- 6. Let (S_n) be the sequence of partial sums of $\sum_{n=1}^{\infty} a_n$. Consider, for example, $S_7 = a_1 + (a_2 + a_3) + (a_4 + a_5 + a_6 + a_7) \ge a_1 + a_1 + (a_2 + a_3) \ge a_1 + a_1 + a_1$. Show that (S_n) is unbounded.

- 7. The sequence is $\frac{2}{10}$, $\frac{2}{10}$ + $\frac{2}{10^2}$, $\frac{2}{10}$ + $\frac{2}{10^2}$ + $\frac{2}{10^3}$, ... which is a sequence of partial sums of the series $\sum_{n=1}^{\infty} \frac{2}{10^n}$. The given sequence converges to $\frac{2}{9}$.
- 8. The sequence of partial sums of $\sum_{k=1}^{\infty} a_{n_k}$ increases and bounded above.
- 9. Use the fact that the series $\sum_{n=1}^{\infty} a_n$ converges if and only if its sequence of partial sums (S_n) satisfies the Cauchy criterion.
- 10. (a) Observe that $2b_n = a_n + |a_n|$ and $2c_n = a_n |a_n|$ for all $n \in \mathbb{N}$.
 - (b) Observe that $|a_n| = 2b_n a_n$ and $|a_n| = a_n 2c_n$ for all $n \in \mathbb{N}$.
- 11. Let (S_n) and $(\overline{S_k})$ be the sequences of partial sums of $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ respectively. Observe that $(\overline{S_k})$ is a subsequence of (S_n) . For the next part, consider the series 1-1+1-1+1-1.... and the grouping $(1-1)+(1-1)+(1-1)+\ldots$
- 12. Let (S_n) and $(\overline{S_n})$ be the sequences of partial sums of $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ respectively. Note that both (S_n) and $(\overline{S_n})$ are increasing sequences. Suppose $S_n \to S$ for some S. Then $\overline{S_n} \leq S$ for all n. Therefore $\overline{S_n}$ converges. If $\overline{S_n} \to \overline{S}$ for some \overline{S} , then $\overline{S} \leq S$. For the proof of $S \leq \overline{S}$, interchange a_n and b_n .
- 13. Trivial.
- 14. (a) Since the series $1+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+\ldots$ diverges, the sequence of the partial sums is unbounded. Therefore there exists a smallest odd positive integer N_1 such that $1+\frac{1}{3}+\ldots+\frac{1}{N_1}>2013$. If $1+\frac{1}{3}+\frac{1}{5}+\ldots+\frac{1}{N_1-2}+\frac{1}{N_1}-\frac{1}{2}>2013$, then $1+\frac{1}{3}+\frac{1}{5}+\ldots+\frac{1}{N_1-2}>2013$ as $\frac{1}{N_1}-\frac{1}{2}<0$ which is a contradiction.
 - (b) Similar to (a).
 - (c) From (b), it follows that $1 + \frac{1}{3} + \frac{1}{5} + \dots + \frac{1}{N_1} \frac{1}{2} + \frac{1}{N_1 + 2} + \dots + \frac{1}{N_2 2} \le 2013$. That is $1 + \frac{1}{3} + \frac{1}{5} + \dots + \frac{1}{N_1} \frac{1}{2} + \frac{1}{N_1 + 2} + \dots + \frac{1}{N_2 2} + \frac{1}{N_2} \le 2013 + \frac{1}{N_2}$. This implies the first inequality of (c).

From the first inequality of (b), $1 + \frac{1}{3} + \frac{1}{5} + \dots + \frac{1}{N_1} - \frac{1}{2} + \frac{1}{N_1 + 2} + \dots + \frac{1}{N_2} - \frac{1}{4} > 2013 - \frac{1}{4}$. This implies the second inequality of (c).

- (d) The proof of the first part is similar to the proof of the first part of (c). The second part follows from the second part of (c).
- (e) Observe from (c) and (d) that the sequence of partial sums of the series of rearrangement converges to 2013.
- 15. (a) Use the fact that $a_n = A_n A_{n-1}$.
 - (b) Since (A_n) is a bounded sequence, let $|A_n| \le M$ for all $n \in \mathbb{N}$ and for some M. Therefore $|A_1(\frac{1}{1} \frac{1}{2})| + |A_2(\frac{1}{2} \frac{1}{3})| + ... + |A_n(\frac{1}{n} \frac{1}{n+1})| \le M(1 \frac{1}{n+1}) < M$.
 - (c) From (b), the sequence of partial sums of the series $A_1(\frac{1}{1} \frac{1}{2}) + A_2(\frac{1}{2} \frac{1}{3}) + \dots$ converges. Therefore (S_n) converges.