
Practice Problems 11 : Series: Definition of convergence, Necessary and sufficient conditions
for convergence, Absolute convergence.

1. Show that
∑∞

n=1 an converges if and only if
∑∞

n=p an converges for any p ∈ N.

2. Show that
∑∞

n=1(an + bn) converges if
∑∞

n=1 an and
∑∞

n=1 bn converge.

3. Show that every sequence is a sequence of partial sums of a series.

4. Show that
∑∞

n=1 (an − an+1) converges if and only if the sequence (an) converges. Verify
the convergence/divergence of the following series:

(a)
∑∞

n=1
4

(4n−3)(4n+1)

(b)
∑∞

n=1
2n+1

n2(n+1)2

5. Show that the series 1
2 + 1

3 + 2
3 + 1

4 + 2
4 + 3

4 + 1
5 + 2

5 + 3
5 + 4

5 + 1
6 + 2

6 + .... diverges.

6. Let (an) be a sequence such that an > 0 and an ≤ a2n + a2n+1 for all n ∈ N. Show that
the series

∑∞
n=1 an diverges.

7. Consider the sequence 0.2, 0.22, 0.222, 0.2222. .... By writing this sequence as a sequence
of partial sums of a series, find the limit of this sequence.

8. Let
∑∞

n=1 an converge and an > 0 for all n. If (ank
) is a subsequence of (an), show that∑∞

k=1 ank
also converges.

9. Show that the series
∑∞

n=1 an converges if and only if for every ε > 0, there exists N ∈ N
such that |

∑n
i=m ai| < ε for all m,n ∈ N satisfying n ≥ m ≥ N .

10. Let
∑∞

n=1 an be a convergent series. Consider
∑∞

n=1 bn and
∑∞

n=1 cn where bn = max{an, 0}
and cn = min{an, 0} (i.e., series of positive terms and series of negative terms of

∑∞
n=1 an).

(a) If
∑∞

n=1 |an| converges then show that both
∑∞

n=1 bn and
∑∞

n=1 cn converge.

(b) If
∑∞

n=1 |an| diverges then show that both
∑∞

n=1 bn and
∑∞

n=1 cn diverge.

11. Let
∑∞

n=1 an be a convergent series and
∑∞

n=1 bn is obtained by grouping finite number
of terms of

∑∞
n=1 an such as (a1 + a2 + ...+ am1) + (am1+1 + am1+2 + ...+ am2) + ... for

some m1,m2, ... (Here b1 = a1 + a2 + ... + am1 , b2 = am1+1 + am1+2 + .... + am2 and so
on). Show that

∑∞
n=1 bn converges and has the same limit as

∑∞
n=1 an. What happens if∑∞

n=1 an diverges ?

12. Let an ≥ 0 for all n ∈ N and
∑∞

n=1 an be a convergent series. Suppose
∑∞

n=1 bn is
obtained by rearranging the terms of

∑∞
n=1 an (i.e., the terms of

∑∞
n=1 bn are same as

those of
∑∞

n=1 an but they occur in different order). Show that
∑∞

n=1 an and
∑∞

n=1 bn
converge to the same limit.

13. Consider the series
∑∞

n=1 an where an = (−)n+1

n . Show that the series

(1− 1

2
)− 1

4
+ (

1

3
− 1

6
)− 1

8
+ (

1

5
− 1

10
)− 1

12
+ ...,

which is obtained from
∑∞

n=1 an by rearranging and grouping, is 1
2

∑∞
n=1 an.

14. (*) Consider the series
∑∞

n=1 an where an = (−)n+1

n . Let α ∈ R; for example take α = 2013.



(a) Show that there exists a smallest odd positive integer N1 such that 1+ 1
3+ 1

5+...+ 1
N1

>

2013. Further show that 1 + 1
3 + 1

5 + ...+ 1
N1
− 1

2 ≤ 2013.

(b) Show that there exists a smallest odd positive integer N2 > N1 such that

1 +
1

3
+

1

5
+ ...+

1

N1
− 1

2
+

1

N1 + 2
+ ...+

1

N2
> 2013.

Further show that 1 + 1
3 + 1

5 + ...+ 1
N1
− 1

2 + 1
N1+2 + ...+ 1

N2
− 1

4 ≤ 2013.

(c) Show that 0 ≤
(

1 + 1
3 + 1

5 + ...+ 1
N1
− 1

2 + 1
N1+2 + ...+ 1

N2

)
− 2013 ≤ 1

N2
and

0 ≤ 2013−
(

1 + 1
3 + 1

5 + ...+ 1
N1
− 1

2 + 1
N1+2 + ...+ 1

N2
− 1

4

)
≤ 1

4 .

(d) Following (b), consider the series of rearrangement

1 + 1
3 + 1

5 + ...+ 1
N1
− 1

2 + 1
N1+2 + ...+ 1

N2
− 1

4 + 1
N2+2 + ...+ 1

N3
− 1

6 + ....

Show that(
1 + 1

3 + 1
5 + ...+ 1

N1
− 1

2 + 1
N1+2 + ...+ 1

N2
− 1

4 + 1
N2+2 + ..+ 1

N3

)
− 2013 ≤ 1

N3
.

Further, for any j such that N2 + 2 ≤ N2 + 2j ≤ N3 − 2, show that

2013−
(

1 + 1
3 + 1

5 + ...+ 1
N1
− 1

2 + 1
N1+2 + ...+ 1

N2
− 1

4 + 1
N2+2 + ...+ 1

N2+2j

)
≤ 1

4 .

(e) Show that the series of rearrangement given in (d) converges to 2013.

15. (*) Let (An) and (Sn) be the sequences of partial sums of the series
∑∞

n=1 an and
∑∞

n=1
an
n

respectively. If
∑∞

n=1 an is convergent or the sequence of partial sums (An) is bounded
then show that

(a) Sn = A1(
1
1 −

1
2) +A2(

1
2 −

1
3) + ...+An( 1

n −
1

n+1) + An
n+1 , for n > 1,

(b) the series |A1(
1
1 −

1
2)|+ |A2(

1
2 −

1
3)|+ ...+ |An( 1

n −
1

n+1)|+ ... converges,

(c) the series
∑∞

n=1
an
n converges.

Practice Problems 11 : Hints/Solutions

1. Let (Sn) be the sequence of partial sums of
∑∞

n=p an. Then for all n > p, the nth term of
the sequence of partial sum of

∑∞
n=1 an is a1 + a2 + ...+ ap−1 + Sn. Use the definition of

the convergence of a series.

2. Use the definition of the convergence of a series.

3. Let (an) be the given sequence. Consider the series a1 + (a2 − a1) + (a3 − a2) + ....

4. Note that the sequence of partial sums of the series
∑∞

n=1(an − an+1) is (a1 − an).

5. The nth term of the series does not converge to 0.

6. Let (Sn) be the sequence of partial sums of
∑∞

n=1 an. Consider, for example, S7 = a1 +
(a2 + a3) + (a4 + a5 + a6 + a7) ≥ a1 + a1 + (a2 + a3) ≥ a1 + a1 + a1. Show that (Sn) is
unbounded.



7. The sequence is 2
10 ,

2
10 + 2

102
, 2
10 + 2

102
+ 2

103
, ... which is a sequence of partial sums of the

series
∑∞

n=1
2

10n . The given sequence converges to 2
9 .

8. The sequence of partial sums of
∑∞

k=1 ank
increases and bounded above.

9. Use the fact that the series
∑∞

n=1 an converges if and only if its sequence of partial sums
(Sn) satisfies the Cauchy criterion.

10. (a) Observe that 2bn = an + |an| and 2cn = an − |an| for all n ∈ N.
(b) Observe that |an| = 2bn − an and |an| = an − 2cn for all n ∈ N.

11. Let (Sn) and (Sk) be the sequences of partial sums of
∑∞

n=1 an and
∑∞

n=1 bn respectively.
Observe that (Sk) is a subsequence of (Sn). For the next part, consider the series 1− 1 +
1− 1 + 1− 1.... and the grouping (1− 1) + (1− 1) + (1− 1) + ....

12. Let (Sn) and (Sn) be the sequences of partial sums of
∑∞

n=1 an and
∑∞

n=1 bn respectively.
Note that both (Sn) and (Sn) are increasing sequences. Suppose Sn → S for some S.
Then Sn ≤ S for all n. Therefore Sn converges. If Sn → S for some S, then S ≤ S. For
the proof of S ≤ S, interchange an and bn.

13. Trivial.

14. (a) Since the series 1 + 1
3 + 1

5 + 1
7 + ... diverges, the sequence of the partial sums is

unbounded. Therefore there exists a smallest odd positive integer N1 such that
1+ 1

3+...+ 1
N1

> 2013. If 1+ 1
3+ 1

5+...+ 1
N1−2+ 1

N1
− 1

2 > 2013, then 1+ 1
3+ 1

5+...+ 1
N1−2 >

2013 as 1
N1
− 1

2 < 0 which is a contradiction.

(b) Similar to (a).

(c) From (b), it follows that 1 + 1
3 + 1

5 + ...+ 1
N1
− 1

2 + 1
N1+2 + ...+ 1

N2−2 ≤ 2013. That

is 1 + 1
3 + 1

5 + ... + 1
N1
− 1

2 + 1
N1+2 + ... + 1

N2−2 + 1
N2
≤ 2013 + 1

N2
. This implies the

first inequality of (c).

From the first inequality of (b), 1+ 1
3 + 1

5 + ...+ 1
N1
− 1

2 + 1
N1+2 + ...+ 1

N2
− 1

4 > 2013− 1
4 .

This implies the second inequality of (c).

(d) The proof of the first part is similar to the proof of the first part of (c). The second
part follows from the second part of (c).

(e) Observe from (c) and (d) that the sequence of partial sums of the series of rearrange-
ment converges to 2013.

15. (a) Use the fact that an = An −An−1.

(b) Since (An) is a bounded sequence, let |An| ≤ M for all n ∈ N and for some M .
Therefore |A1(

1
1 −

1
2)|+ |A2(

1
2 −

1
3)|+ ...+ |An( 1

n −
1

n+1)| ≤M(1− 1
n+1) < M.

(c) From (b), the sequence of partial sums of the series A1(
1
1 −

1
2) + A2(

1
2 −

1
3) + ...

converges. Therefore (Sn) converges.


