
Practice Problems 14 : Power Series, Taylor’s Series

1. For a given
∑∞

n=0 anx
n, let

K =

{
|x| : x ∈ R and

∞∑
n=0

anx
n is convergent

}

be bounded. If r = supK, then
∑∞

n=0 anx
n

(a) converges absolutely for all x ∈ R with |x| < r,

(b) diverges for all x ∈ R with |x| > r.

2. In each of the following cases, determine the values of x for which the power series con-
verges.

(a)
∑∞

n=0
2nxn

nn (b)
∑∞

n=0
(n!)2xn

(2n)! (c)
∑∞

n=0(−1)nn2nxn

(d)
∑∞

n=0
(x−2)n+1

n3n (e)
∑∞

n=0(−1)n 10n

n! (x− 10)n

3. Determine the values of x for which the series
∑∞

n=2
xn

n(lnn)2
converges absolutely.

4. Let (Sn) be the sequence of partial sums of the Maclaurin series of ln(1 +x). Show that if
0 ≤ x ≤ 1, then Sn → ln(1+x), i.e, the Maclaurin series of ln(1+x) converges to ln(1+x)
on [0, 1].

5. Let f : (a, b) → R be infinitely differentiable and x0 ∈ (a, b). Suppose that there exists
M > 0 such that |fn(x)| ≤ Mn for all n ∈ N and x ∈ (a, b). Show that Taylor’s series of
f around x0 converges to f(x) for all x ∈ (a, b).

6. Estimate the upper bound on the error if we consider P2(x) = 1+x+x2

2 as an approximation
for ex on [0, 0.1].

7. Let f(x) = e−
1
x2 when x 6= 0 and f(0) = 0. Show that

(a) f ′(0) = 0.

(b) for x 6= 0, n ≥ 1 , f (n)(x) = Pn( 1x)e−
1
x2 where Pn is a polynomial of degree 3n.

(c) f (n)(0) = 0 for n = 1, 2, ....

(d) the Maclaurin series of f converges to f(x) only when x = 0.

8. (*) Let an ≥ 0 for all n ∈ N and (a
1
n
n ) be a bounded sequence. For each n, define

An = sup{a
1
k
k : k ≥ n}

(see Problem 12 in Practice Problems 2). Since (An) converges, let An → ` for some ` > 0.

(a) If ` < 1, the series
∑∞

n=1 an converges and if ` > 1, the series diverges.

(b) The radius of convergence of the power series
∑∞

n=1 anx
n is 1

`

(c) Find the radius of convergence of the power series
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Practice Problems 14 : Hints/Solutions

1. (a) If |x| < r, then by the definition of supremum there exists |x0| ∈ K such that |x| <
|x0|. Since

∑∞
n=0 anx

n
0 converges, by Theorem 1,

∑∞
n=0 anx

n converges absolutely.

(b) Suppose |x| > r. By the definition of K,
∑∞

n=0 anx
n diverges.

2. (a) Since |xn

nn |
1
n → 0, by the root test the series converges for all x ∈ R.

(b) In this case |an+1xn+1

anxn | → |x4 | and an+14n+1

an4n
= (n+1)

(n+ 1
2
)
> 1. The series converges only for

|x| < 4 as (an4n) increases and an4n 9 0.

(c) Use Ratio test. The series converges only for |x| < 1
2 .

(d) Use Ratio test. The series converges for |x − 2| < 3, and hence for −1 < x < 5. At
x = 5 the series diverges and x = −1 the series converges.

(e) Since |an+1

an
(x− 10)| → 0, the series converges for all x ∈ R.

3. Apply the Ratio test. The series converges absolutely if and only if x ∈ [−1, 1].

4. By Taylor’s theorem ln(1 + x) = Sn + (−1)n
n+1

xn+1

(1+c)n+1 for some c ∈ (0, x). This implies that

| ln(1 + x)− Sn| = | (−1)
n

n+1
xn+1

(1+c)n+1 | ≤ |x
n+1

n+1 | → 0.

5. Note that for x ∈ (a, b), |En(x)| = |f
n+1(c)
(n+1)! ||x− x0|

n+1 for some c between x and x0. This

implies that |En(x)| ≤ An+1

(n+1)! where A = M |x − x0|. It follows from the ratio test for

sequences that An+1

(n+1)! → 0. This shows that Taylor’s series of f converges to f(x).

6. Note that |E2(x)| = |f(x)− P2(x)| ≤ e0.1

3! |x|
3 ≤ e0.1×0.001

6 .

7. (a) Note that limx→0+
f(x)−f(0)

x = limx→0+
e
− 1

x2

x = limx→0+
1
x

e
1
x2

= limy→∞
y

ey2
= 0, by

L’Hospital Rule.

(b) If f (n)(x) = Pn( 1x)e−
1
x2 , then

f (n+1)(x) =

{
P ′n(

1

x
)(− 1

x2
) + Pn(

1

x
)(

2

x3
)

}
e−

1
x2 = Pn+1(

1

x
)e−

1
x2

where Pn+1(t) = −t2P ′n(y) + 2t3Pn(t) which is of degree 3n+ 3 if Pn is of degree 3n.
Use induction argument.

(c) If fn−1(0) = 0 then, as done in (a), limx→0+
f (n−1)(x)−f (n−1)(0)

x = limy→∞
yPn−1(y)

ey2
= 0,

i.e., fn(0) = 0.

(d) Trivial.

8. (a) If ` < 1, then find ε > 0 such that ` < ` + ε < 1. Since An → `, there exists N ∈ N
such that An < `+ ε for all n ≥ N . That is a

1
n
n < `+ ε < 1 for all n ≥ N . Therefore

by the Root Test the series
∑∞

n=1 an converges.

If ` > 1, choose ε > 0 such that `− ε > 1. Since An → `, there exists a subsequence

(a
1
nk
nk ) of (a

1
n
n ) such that a

1
nk
nk ≥ ` − ε > 1. Hence a

1
n
n 9 0 and therefore

∑∞
n=1 an

diverges.

(b) Follows from the proof of (a) (Repeat the proof of (a) by replacing an by anx
n).

(c) See Problem 5 of Practice Problems 13. In this case ` = 1√
2

and hence 1
` =
√

2 is the

radius of convergence.


