1. For a given $\sum_{n=0}^{\infty} a_n x^n$, let

$$K = \left\{ |x| : x \in \mathbb{R} \text{ and } \sum_{n=0}^{\infty} a_n x^n \text{ is convergent} \right\}$$

be bounded. If $r = \sup K$, then $\sum_{n=0}^{\infty} a_n x^n$

- (a) converges absolutely for all $x \in \mathbb{R}$ with |x| < r,
- (b) diverges for all $x \in \mathbb{R}$ with |x| > r.
- 2. In each of the following cases, determine the values of x for which the power series converges.
- (c) $\sum_{n=0}^{\infty} (-1)^n n 2^n x^n$

- (a) $\sum_{n=0}^{\infty} \frac{2^n x^n}{n^n}$ (b) $\sum_{n=0}^{\infty} \frac{(n!)^2 x^n}{(2n)!}$ (d) $\sum_{n=0}^{\infty} \frac{(x-2)^{n+1}}{n3^n}$ (e) $\sum_{n=0}^{\infty} (-1)^n \frac{10^n}{n!} (x-10)^n$
- 3. Determine the values of x for which the series $\sum_{n=2}^{\infty} \frac{x^n}{n(\ln n)^2}$ converges absolutely.
- 4. Let (S_n) be the sequence of partial sums of the Maclaurin series of $\ln(1+x)$. Show that if $0 \le x \le 1$, then $S_n \to \ln(1+x)$, i.e, the Maclaurin series of $\ln(1+x)$ converges to $\ln(1+x)$ on [0, 1].
- 5. Let $f:(a,b)\to\mathbb{R}$ be infinitely differentiable and $x_0\in(a,b)$. Suppose that there exists M>0 such that $|f^n(x)|\leq M^n$ for all $n\in\mathbb{N}$ and $x\in(a,b)$. Show that Taylor's series of f around x_0 converges to f(x) for all $x \in (a,b)$.
- 6. Estimate the upper bound on the error if we consider $P_2(x) = 1 + x + \frac{x^2}{2}$ as an approximation for e^x on [0, 0.1].
- 7. Let $f(x) = e^{-\frac{1}{x^2}}$ when $x \neq 0$ and f(0) = 0. Show that
 - (a) f'(0) = 0.
 - (b) for $x \neq 0$, $n \geq 1$, $f^{(n)}(x) = P_n(\frac{1}{x})e^{-\frac{1}{x^2}}$ where P_n is a polynomial of degree 3n.
 - (c) $f^{(n)}(0) = 0$ for n = 1, 2, ...
 - (d) the Maclaurin series of f converges to f(x) only when x = 0.
- 8. (*) Let $a_n \geq 0$ for all $n \in \mathbb{N}$ and $(a_n^{\frac{1}{n}})$ be a bounded sequence. For each n, define

$$A_n = \sup\{a_k^{\frac{1}{k}} : k \ge n\}$$

(see Problem 12 in Practice Problems 2). Since (A_n) converges, let $A_n \to \ell$ for some $\ell > 0$.

- (a) If $\ell < 1$, the series $\sum_{n=1}^{\infty} a_n$ converges and if $\ell > 1$, the series diverges.
- (b) The radius of convergence of the power series $\sum_{n=1}^{\infty} a_n x^n$ is $\frac{1}{\ell}$
- (c) Find the radius of convergence of the power series

$$\frac{1}{2}x + \frac{1}{3}x^2 + \frac{1}{2^2}x^3 + \frac{1}{3^2}x^4 + \frac{1}{2^3}x^5 + \frac{1}{3^3}x^6 + \frac{1}{2^4}x^7 + \frac{1}{3^4}x^8 + \dots$$

Practice Problems 14: Hints/Solutions

- 1. (a) If |x| < r, then by the definition of supremum there exists $|x_0| \in K$ such that $|x| < |x_0|$. Since $\sum_{n=0}^{\infty} a_n x_0^n$ converges, by Theorem 1, $\sum_{n=0}^{\infty} a_n x^n$ converges absolutely.
 - (b) Suppose |x| > r. By the definition of K, $\sum_{n=0}^{\infty} a_n x^n$ diverges.
- 2. (a) Since $\left|\frac{x^n}{n^n}\right|^{\frac{1}{n}} \to 0$, by the root test the series converges for all $x \in \mathbb{R}$.
 - (b) In this case $\left|\frac{a_{n+1}x^{n+1}}{a_nx^n}\right| \to \left|\frac{x}{4}\right|$ and $\frac{a_{n+1}4^{n+1}}{a_n4^n} = \frac{(n+1)}{(n+\frac{1}{2})} > 1$. The series converges only for |x| < 4 as (a_n4^n) increases and $a_n4^n \to 0$.
 - (c) Use Ratio test. The series converges only for $|x| < \frac{1}{2}$.
 - (d) Use Ratio test. The series converges for |x-2| < 3, and hence for -1 < x < 5. At x = 5 the series diverges and x = -1 the series converges.
 - (e) Since $\left|\frac{a_{n+1}}{a_n}(x-10)\right| \to 0$, the series converges for all $x \in \mathbb{R}$.
- 3. Apply the Ratio test. The series converges absolutely if and only if $x \in [-1, 1]$.
- 4. By Taylor's theorem $\ln(1+x) = S_n + \frac{(-1)^n}{n+1} \frac{x^{n+1}}{(1+c)^{n+1}}$ for some $c \in (0,x)$. This implies that $|\ln(1+x) S_n| = |\frac{(-1)^n}{n+1} \frac{x^{n+1}}{(1+c)^{n+1}}| \le |\frac{x^{n+1}}{n+1}| \to 0$.
- 5. Note that for $x \in (a, b)$, $|E_n(x)| = |\frac{f^{n+1}(c)}{(n+1)!}||x x_0|^{n+1}$ for some c between x and x_0 . This implies that $|E_n(x)| \leq \frac{A^{n+1}}{(n+1)!}$ where $A = M|x x_0|$. It follows from the ratio test for sequences that $\frac{A^{n+1}}{(n+1)!} \to 0$. This shows that Taylor's series of f converges to f(x).
- 6. Note that $|E_2(x)| = |f(x) P_2(x)| \le \frac{e^{0.1}}{3!} |x|^3 \le \frac{e^{0.1} \times 0.001}{6}$.
- 7. (a) Note that $\lim_{x\to 0^+} \frac{f(x)-f(0)}{x} = \lim_{x\to 0^+} \frac{e^{-\frac{1}{x^2}}}{x} = \lim_{x\to 0^+} \frac{\frac{1}{x}}{e^{\frac{1}{x^2}}} = \lim_{y\to\infty} \frac{y}{e^{y^2}} = 0$, by L'Hospital Rule.
 - (b) If $f^{(n)}(x) = P_n(\frac{1}{x})e^{-\frac{1}{x^2}}$, then

$$f^{(n+1)}(x) = \left\{ P'_n(\frac{1}{x})(-\frac{1}{x^2}) + P_n(\frac{1}{x})(\frac{2}{x^3}) \right\} e^{-\frac{1}{x^2}} = P_{n+1}(\frac{1}{x})e^{-\frac{1}{x^2}}$$

where $P_{n+1}(t) = -t^2 P'_n(y) + 2t^3 P_n(t)$ which is of degree 3n + 3 if P_n is of degree 3n. Use induction argument.

- (c) If $f^{n-1}(0) = 0$ then, as done in (a), $\lim_{x \to 0^+} \frac{f^{(n-1)}(x) f^{(n-1)}(0)}{x} = \lim_{y \to \infty} \frac{yP_{n-1}(y)}{e^{y^2}} = 0$, i.e., $f^n(0) = 0$.
- (d) Trivial.
- 8. (a) If $\ell < 1$, then find $\epsilon > 0$ such that $\ell < \ell + \epsilon < 1$. Since $A_n \to \ell$, there exists $N \in \mathbb{N}$ such that $A_n < \ell + \epsilon$ for all $n \ge N$. That is $a_n^{\frac{1}{n}} < \ell + \epsilon < 1$ for all $n \ge N$. Therefore by the Root Test the series $\sum_{n=1}^{\infty} a_n$ converges.

If $\ell > 1$, choose $\epsilon > 0$ such that $\ell - \epsilon > 1$. Since $A_n \to \ell$, there exists a subsequence $(a_{n_k}^{\frac{1}{n_k}})$ of $(a_n^{\frac{1}{n_k}})$ such that $a_{n_k}^{\frac{1}{n_k}} \ge \ell - \epsilon > 1$. Hence $a_n^{\frac{1}{n}} \nrightarrow 0$ and therefore $\sum_{n=1}^{\infty} a_n$ diverges.

- (b) Follows from the proof of (a) (Repeat the proof of (a) by replacing a_n by $a_n x^n$).
- (c) See Problem 5 of Practice Problems 13. In this case $\ell = \frac{1}{\sqrt{2}}$ and hence $\frac{1}{\ell} = \sqrt{2}$ is the radius of convergence.