1. For a given $\sum_{n=0}^{\infty} a_{n} x^{n}$, let

$$
K=\left\{|x|: x \in \mathbb{R} \text { and } \sum_{n=0}^{\infty} a_{n} x^{n} \text { is convergent }\right\}
$$

be bounded. If $r=\sup K$, then $\sum_{n=0}^{\infty} a_{n} x^{n}$
(a) converges absolutely for all $x \in \mathbb{R}$ with $|x|<r$,
(b) diverges for all $x \in \mathbb{R}$ with $|x|>r$.
2. In each of the following cases, determine the values of x for which the power series converges.
(a) $\sum_{n=0}^{\infty} \frac{2^{n} x^{n}}{n^{n}}$
(b) $\sum_{n=0}^{\infty} \frac{(n!)^{2} x^{n}}{(2 n)!}$
(c) $\sum_{n=0}^{\infty}(-1)^{n} n 2^{n} x^{n}$
(d) $\sum_{n=0}^{\infty} \frac{(x-2)^{n+1}}{n 3^{n}}$
(e) $\sum_{n=0}^{\infty}(-1)^{n} \frac{10^{n}}{n!}(x-10)^{n}$
3. Determine the values of x for which the series $\sum_{n=2}^{\infty} \frac{x^{n}}{n(\ln n)^{2}}$ converges absolutely.
4. Let $\left(S_{n}\right)$ be the sequence of partial sums of the Maclaurin series of $\ln (1+x)$. Show that if $0 \leq x \leq 1$, then $S_{n} \rightarrow \ln (1+x)$, i.e, the Maclaurin series of $\ln (1+x)$ converges to $\ln (1+x)$ on $[0,1]$.
5. Let $f:(a, b) \rightarrow \mathbb{R}$ be infinitely differentiable and $x_{0} \in(a, b)$. Suppose that there exists $M>0$ such that $\left|f^{n}(x)\right| \leq M^{n}$ for all $n \in \mathbb{N}$ and $x \in(a, b)$. Show that Taylor's series of f around x_{0} converges to $f(x)$ for all $x \in(a, b)$.
6. Estimate the upper bound on the error if we consider $P_{2}(x)=1+x+\frac{x^{2}}{2}$ as an approximation for e^{x} on $[0,0.1]$.
7. Let $f(x)=e^{-\frac{1}{x^{2}}}$ when $x \neq 0$ and $f(0)=0$. Show that
(a) $f^{\prime}(0)=0$.
(b) for $x \neq 0, n \geq 1, f^{(n)}(x)=P_{n}\left(\frac{1}{x}\right) e^{-\frac{1}{x^{2}}}$ where P_{n} is a polynomial of degree $3 n$.
(c) $f^{(n)}(0)=0$ for $n=1,2, \ldots$.
(d) the Maclaurin series of f converges to $f(x)$ only when $x=0$.
8. (*) Let $a_{n} \geq 0$ for all $n \in \mathbb{N}$ and ($\left.a_{n}^{\frac{1}{n}}\right)$ be a bounded sequence. For each n, define

$$
A_{n}=\sup \left\{a_{k}^{\frac{1}{k}}: k \geq n\right\}
$$

(see Problem 12 in Practice Problems 2). Since (A_{n}) converges, let $A_{n} \rightarrow \ell$ for some $\ell>0$.
(a) If $\ell<1$, the series $\sum_{n=1}^{\infty} a_{n}$ converges and if $\ell>1$, the series diverges.
(b) The radius of convergence of the power series $\sum_{n=1}^{\infty} a_{n} x^{n}$ is $\frac{1}{\ell}$
(c) Find the radius of convergence of the power series

$$
\frac{1}{2} x+\frac{1}{3} x^{2}+\frac{1}{2^{2}} x^{3}+\frac{1}{3^{2}} x^{4}+\frac{1}{2^{3}} x^{5}+\frac{1}{3^{3}} x^{6}+\frac{1}{2^{4}} x^{7}+\frac{1}{3^{4}} x^{8}+\ldots
$$

Practice Problems 14 : Hints/Solutions

1. (a) If $|x|<r$, then by the definition of supremum there exists $\left|x_{0}\right| \in K$ such that $|x|<$ $\left|x_{0}\right|$. Since $\sum_{n=0}^{\infty} a_{n} x_{0}^{n}$ converges, by Theorem $1, \sum_{n=0}^{\infty} a_{n} x^{n}$ converges absolutely.
(b) Suppose $|x|>r$. By the definition of $K, \sum_{n=0}^{\infty} a_{n} x^{n}$ diverges.
2. (a) Since $\left|\frac{x^{n}}{n^{n}}\right|^{\frac{1}{n}} \rightarrow 0$, by the root test the series converges for all $x \in \mathbb{R}$.
(b) In this case $\left|\frac{a_{n+1} x^{n+1}}{a_{n} x^{n}}\right| \rightarrow\left|\frac{x}{4}\right|$ and $\frac{a_{n+1} 4^{n+1}}{a_{n} 4^{n}}=\frac{(n+1)}{\left(n+\frac{1}{2}\right)}>1$. The series converges only for $|x|<4$ as $\left(a_{n} 4^{n}\right)$ increases and $a_{n} 4^{n} \nrightarrow 0$.
(c) Use Ratio test. The series converges only for $|x|<\frac{1}{2}$.
(d) Use Ratio test. The series converges for $|x-2|<3$, and hence for $-1<x<5$. At $x=5$ the series diverges and $x=-1$ the series converges.
(e) Since $\left|\frac{a_{n+1}}{a_{n}}(x-10)\right| \rightarrow 0$, the series converges for all $x \in \mathbb{R}$.
3. Apply the Ratio test. The series converges absolutely if and only if $x \in[-1,1]$.
4. By Taylor's theorem $\ln (1+x)=S_{n}+\frac{(-1)^{n}}{n+1} \frac{x^{n+1}}{(1+c)^{n+1}}$ for some $c \in(0, x)$. This implies that $\left|\ln (1+x)-S_{n}\right|=\left|\frac{(-1)^{n}}{n+1} \frac{x^{n+1}}{(1+c)^{n+1}}\right| \leq\left|\frac{x^{n+1}}{n+1}\right| \rightarrow 0$.
5. Note that for $x \in(a, b),\left|E_{n}(x)\right|=\left|\frac{f^{n+1}(c)}{(n+1)!} \| x-x_{0}\right|^{n+1}$ for some c between x and x_{0}. This implies that $\left|E_{n}(x)\right| \leq \frac{A^{n+1}}{(n+1)!}$ where $A=M\left|x-x_{0}\right|$. It follows from the ratio test for sequences that $\frac{A^{n+1}}{(n+1)!} \rightarrow 0$. This shows that Taylor's series of f converges to $f(x)$.
6. Note that $\left|E_{2}(x)\right|=\left|f(x)-P_{2}(x)\right| \leq \frac{e^{0.1}}{3!}|x|^{3} \leq \frac{e^{0.1} \times 0.001}{6}$.
7. (a) Note that $\lim _{x \rightarrow 0^{+}} \frac{f(x)-f(0)}{x}=\lim _{x \rightarrow 0^{+}} \frac{e^{-\frac{1}{x^{2}}}}{x}=\lim _{x \rightarrow 0^{+}} \frac{\frac{1}{x}}{e^{\frac{1}{x^{2}}}}=\lim _{y \rightarrow \infty} \frac{y}{e^{y^{2}}}=0$, by L'Hospital Rule.
(b) If $f^{(n)}(x)=P_{n}\left(\frac{1}{x}\right) e^{-\frac{1}{x^{2}}}$, then

$$
f^{(n+1)}(x)=\left\{P_{n}^{\prime}\left(\frac{1}{x}\right)\left(-\frac{1}{x^{2}}\right)+P_{n}\left(\frac{1}{x}\right)\left(\frac{2}{x^{3}}\right)\right\} e^{-\frac{1}{x^{2}}}=P_{n+1}\left(\frac{1}{x}\right) e^{-\frac{1}{x^{2}}}
$$

where $P_{n+1}(t)=-t^{2} P_{n}^{\prime}(y)+2 t^{3} P_{n}(t)$ which is of degree $3 n+3$ if P_{n} is of degree $3 n$. Use induction argument.
(c) If $f^{n-1}(0)=0$ then, as done in (a), $\lim _{x \rightarrow 0^{+}} \frac{f^{(n-1)}(x)-f^{(n-1)}(0)}{x}=\lim _{y \rightarrow \infty} \frac{y P_{n-1}(y)}{e^{y^{2}}}=0$, i.e., $f^{n}(0)=0$.
(d) Trivial.
8. (a) If $\ell<1$, then find $\epsilon>0$ such that $\ell<\ell+\epsilon<1$. Since $A_{n} \rightarrow \ell$, there exists $N \in \mathbb{N}$ such that $A_{n}<\ell+\epsilon$ for all $n \geq N$. That is $a_{n}^{\frac{1}{n}}<\ell+\epsilon<1$ for all $n \geq N$. Therefore by the Root Test the series $\sum_{n=1}^{\infty} a_{n}$ converges.

If $\ell>1$, choose $\epsilon>0$ such that $\ell-\epsilon>1$. Since $A_{n} \rightarrow \ell$, there exists a subsequence $\left(a_{n_{k}}^{\frac{1}{n_{k}}}\right)$ of $\left(a_{n}^{\frac{1}{n}}\right)$ such that $a_{n_{k}}^{\frac{1}{n_{k}}} \geq \ell-\epsilon>1$. Hence $a_{n}^{\frac{1}{n}} \nrightarrow 0$ and therefore $\sum_{n=1}^{\infty} a_{n}$ diverges.
(b) Follows from the proof of (a) (Repeat the proof of (a) by replacing a_{n} by $a_{n} x^{n}$).
(c) See Problem 5 of Practice Problems 13. In this case $\ell=\frac{1}{\sqrt{2}}$ and hence $\frac{1}{\ell}=\sqrt{2}$ is the radius of convergence.

