- 1. Show that $\int_1^\infty \frac{1}{t^p} dt$ converges to $\frac{1}{p-1}$ if p > 1 and it diverges to ∞ if $p \le 1$.
- 2. Let $f:[a,\infty) \to \mathbb{R}$ be differentiable and f' be integrable on [a,x] for all $x \ge a$. Show that $\int_a^\infty f'(t)dt$ converges if and only if $\lim_{t\to\infty} f(t)$ exists.

3. Find the limits of the following improper integrals.

- (a) $\int_{0}^{\pi/2} \ln t dt$ (b) $\int_{0}^{1} \ln \frac{1}{t} dt$ (c) $\int_{0}^{\infty} e^{-t} dt$ (d) $\int_{0}^{\infty} \frac{dt}{e^{t} + e^{-t}} dt$ (e) $\int_{1}^{\infty} p^{t} dt, \ 0$
- 4. (Cauchy Criterion) Let $f : [a, \infty) \to \mathbb{R}$ be integrable on [a, x] for all $x \ge a$. Show that $\int_a^\infty f(t)dt$ converges if and only if for every $\epsilon > 0$ there exists $N \ge a$ such that $\left|\int_x^y f(t)dt\right| < \epsilon$ for every $x, y \ge N$.
- 5. Let $f: [0,\infty) \to \mathbb{R}$ be defined by $f(t) = \frac{(-1)^{n+1}}{n}$ when $t \in [n-1,n), n \in \mathbb{N}$. Show that $\int_0^\infty f(t)dt$ converges but not absolutely.
- 6. Let $f: [1,\infty) \to \mathbb{R}$ be defined by f(n) = 1 for all $n \in \mathbb{N}$ and f(x) = 0 if $x \in [1,\infty) \setminus \mathbb{N}$. Then show that
 - (a) $\int_{1}^{\infty} f(t)dt$ converges but $\sum_{n=1}^{\infty} f(n)$ diverges.
 - (b) $\int_{1}^{\infty} (f(t) 1) dt$ diverges but $\sum_{n=1}^{\infty} (f(n) 1)$ converges.
- 7. (Integral Test) Let $f : [1, \infty) \to \mathbb{R}$ be a non-negative decreasing function. Then show that
 - (a) (μ_n) is decreasing and bounded below where $\mu_n = (\sum_{k=1}^n f(k)) \int_1^n f(t) dt$.
 - (b) either both $\sum_{n=1}^{\infty} f(n)$ and $\int_{1}^{\infty} f(t) dt$ converge or else both diverge.
- 8. (a) Let $f: [1, \infty) \to \mathbb{R}$ be such that f(n) = 1 for all $n \in \mathbb{N}$ and f(t) = 0 otherwise. Show that $\int_{1}^{\infty} f(t)dt$ converges but $f(t) \neq 0$ as $t \to \infty$.
 - (b) Does there exist a continuous function $f: [1, \infty) \to \mathbb{R}$ such that $\int_1^\infty f(t)dt$ converges but $f(t) \to 0$ as $n \to \infty$?

9. Determine the values of k for which the improper integral $\int_{1}^{\infty} \left[\frac{kt}{1+t^2} - \frac{1}{2t}\right] dt$ converges.

- 10. (Drichlet Test) Let $f, g : [a, \infty) \to \mathbb{R}$ be such that
 - (a) f is continuous, decreasing and $f(t) \to 0$ as $t \to \infty$,
 - (b) there exists M such that $\left|\int_{a}^{x} g(t)dt\right| \leq M$ for all x > a.

Then $\int_{a}^{\infty} f(t)g(t)dt$ converges.

- 11. Determine the values of p for which the following improper integrals converge.
 - (a) $\int_{1}^{\infty} \frac{\sin t}{t^{p}} dt$ (b) $\int_{1}^{\infty} \frac{\ln t}{t^{p}} dt$ (c) $\int_{0}^{\infty} \frac{t^{p-1}}{1+t} dt$ (d) $\int_{1}^{\infty} t^{p} e^{-t} dt$ (e) $\int_{0}^{1} \frac{1-\cos t}{t^{p}} dt.$
- 12. (Root Test) Let $f : [a, \infty) \to \mathbb{R}$ be such that f is integrable on [a, x] for all x > a. Suppose $|f(t)|^{\frac{1}{t}} \to \ell$ as $t \to \infty$ for some $\ell \in \mathbb{R}$ or $\ell = \infty$. Then

- (a) if $\ell < 1$, then the integral $\int_a^{\infty} f(t) dt$ converges absolutely.
- (b) if $\ell > 1$ and f is non-negative then the integral $\int_a^{\infty} f(t)dt$ diverges.

13. Determine the convegence/divergence of the following integrals.

$$(a) \int_{0}^{1} \frac{\sqrt{t}}{e^{\sin t - 1}} dt.$$

$$(b) \int_{0}^{\frac{\pi}{2}} \ln(\sin t) dt$$

$$(c) \int_{0}^{\infty} \frac{1}{t^{2} + \sqrt{t}} dt$$

$$(d) \int_{0}^{1} \cos \frac{1}{t^{2}} dt.$$

$$(e) \int_{0}^{\infty} \sin t^{3} dt$$

$$(f) \int_{1}^{\infty} \frac{\sin 2t}{\sqrt{t}} e^{\sin t} dt$$

$$(g) \int_{1}^{\infty} t \sin t^{4} dt$$

$$(h) \int_{0}^{\frac{\pi}{4}} \frac{dt}{t - \sin t}.$$

$$(i) \int_{1}^{\infty} \frac{1 - 5 \sin 2t}{t^{2} + \sqrt{t}} dt$$

$$(j) \int_{0}^{1} \frac{e^{\frac{t}{2}}}{\sqrt{1 - \cos t}} dt$$

$$(k) \int_{1}^{\infty} \frac{t^{t}}{e^{2t}} dt$$

$$(l) \int_{1}^{\infty} \frac{e^{t}}{4^{t}} dt.$$

14. (Gamma Function) Show that the following function Γ , called Gamma function, is well defined: $\Gamma : (0, \infty) \to \mathbb{R}$ given by $\Gamma(p) = \int_0^\infty e^{-t} t^{p-1} dt$.

Practice Problems 18 : Hints/Solutions

- 1. If $p \neq 1$ then for $x \in [1, \infty)$, $\int_1^x \frac{1}{t^p} dt = \frac{x^{1-p}-1}{1-p}$. If p = 1, then for $x \in [1, \infty)$, $\int_1^x \frac{1}{t} dt = \ln x$.
- 2. By the FTC, $\int_a^x f'(t)dt = f(x) f(a)$, for $x \in [a, \infty)$.
- 3. (a) $\lim_{x\to 0} \int_x^{\frac{\pi}{2}} \ln t dt = \lim_{x\to 0} [t \ln t t]_x^{\frac{\pi}{2}} = \frac{\pi}{2} [\ln \frac{\pi}{2} 1].$ (b) $\lim_{x\to 0} \int_x^1 \ln \frac{1}{t} dt = \lim_{x\to 0} [t - t \ln t]_x^1 = 1.$ (c) $\lim_{x\to\infty} \int_0^x e^{-t} dt = \lim_{x\to\infty} [-e^{-t}]_0^x = \lim_{x\to\infty} [1 - e^{-x}] = 1.$ (d) $\lim_{x\to\infty} \int_0^x \frac{e^t}{e^{2t} + 1} dt = \lim_{x\to\infty} \int_1^{e^x} \frac{1}{1 + u^2} du = \lim_{x\to\infty} [\tan^{-1} u]_1^{e^x} = \frac{\pi}{2} - \frac{\pi}{4} = \frac{\pi}{4}.$ (e) $\lim_{x\to\infty} \int_1^x p^t dt = \lim_{x\to\infty} \left[\frac{p^x - p}{\ln p} \right] = \frac{-p}{\ln p}.$

4.
$$\int_{a}^{\infty} f(t)dt = \ell \Leftrightarrow \forall \epsilon > 0 \exists N \ge a \text{ such that } \left| \int_{a}^{x} f(t)dt - \ell \right| < \epsilon \text{ for every } x \ge N.$$

- 5. Let $\alpha = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n}$. Observe that $\lim_{n \to \infty} \int_0^n f(t) dt = \lim_{n \to \infty} \left(\int_0^1 f(t) dt + \int_1^2 f(t) dt + \dots + \int_{n-1}^n f(t) dt \right) = \alpha$ and for $x \in [n, n+1], \ \left| \alpha - \int_0^x f(t) dt \right| \le \max \left\{ \left| \alpha - \int_0^n f(t) dt \right|, \left| \alpha - \int_0^{n+1} f(t) dt \right| \right\}.$
- 6. Trivial

7. (a) Note that, since f is decreasing,
$$f(n+1) \leq \int_{n}^{n+1} f(t)dt \leq f(n)$$
. Now $\mu(n+1) - \mu(n) = f(n+1) - \int_{n}^{n+1} f(t)dt \leq 0$ and $\mu(n) = \sum_{k=1}^{n} f(k) - \left(\sum_{k=1}^{n-1} \int_{k}^{k+1} f(t)dt\right) \geq \sum_{n=1}^{n} f(k) - \sum_{n=1}^{n-1} f(k) = f(n) > 0.$
(b) Follows from (a).

- 8. (a) Trivial.
 - (b) Yes. The graph of such a function is given in Figure 1.
- 9. Note that $\frac{kt}{1+t^2} \frac{1}{2t} = \frac{(2k-1)t^2-1}{2t(1+t^2)}$. When $k = \frac{1}{2}$, use the LCT with $\frac{1}{t^3}$ and when $k \neq \frac{1}{2}$ use the LCT with $\frac{1}{t}$.

- 10. (*) Let $\epsilon > 0$. Since f is decreasing and $f(t) \to 0$ as $t \to \infty$, there exists N > 0 such that $|f(t)| \leq \frac{\epsilon}{2M}$ for all $t \geq N$. Let y > x > N. Then by the second MVT for integrals, there exists $c \in [x, y]$ such that $\left|\int_x^y f(t)g(t)dt\right| = \left|f(c)\int_x^y g(t)dt\right| \leq |f(c)|\left|\int_a^y g(t)dt \int_a^x g(t)dt\right| \leq \frac{\epsilon}{2M}2M = \epsilon$. By the Cauchy Criterion (Problem 4), $\int_a^\infty f(t)g(t)dt$ converges.
- 11. (a) For p > 0, $\int_1^\infty \frac{\sin t}{t^p} dt$ converges by the Dirichlet test. For $p \le 0$, let q = -p. Then $\int_1^\infty t^q \sin t dt$ does not converge. If so, then its partial integral is bounded and hence again by the Dirichlet test $\int_1^\infty \frac{t^q \sin t}{t^q} dt$ converges.
 - (b) Let p > 1 and 1 < q < p. Then $\frac{(\ln t)/t^p}{1/t^q} = \frac{\ln t}{t^{p-q}} \to 0$ as $t \to \infty$. Therefore by the LCT, the integral converges. For $p \le 1$, $\frac{(\ln t)/t^p}{1/t^p} = \ln t \to \infty$ as $t \to \infty$. Therefore by the LCT, the integral diverges for $p \le 1$.
 - (c) Consider $I_1 = \int_0^1 \frac{t^{p-1}}{1+t} dt$ and $I_2 = \int_1^\infty \frac{t^{p-1}}{1+t} dt$. For convergence of I_1 , use the LCT with t^{p-1} . This shows that I_1 converges for 1-p < 1; that is p > 0. For the convergence of I_2 , use the LCT with t^{p-2} . This shows that I_2 converges for p < 1. Therefore I converges only for 0 .
 - (d) Let $p \in \mathbb{R}$. Use the LCT with $\frac{1}{t^2}$. Hence $\int_1^\infty t^p e^{-t} dt$ converges for all $p \in \mathbb{R}$.
 - (e) Observe that $1 \cos t$ behaves like $\frac{t^2}{2}$ near 0. So use the LCT with $\frac{1}{t^{p-2}}$ and observe that the integral converges for p < 3 and diverges for $p \ge 3$.
- 12. (a) If $\ell < 1$ then find $\epsilon > 0$ such that $\ell + \epsilon < 1$. Then there exists $N \in \mathbb{N}$ such that $|f(t)|^{\frac{1}{t}} \leq \ell + \epsilon$ for all $t \geq N$. That is $|f(t)| \leq (\ell + \epsilon)^t$ for all $t \geq N$. By Problem 3(e) and the comparison test, the integral converges absolutely.
 - (b) If $\ell > 1$, then there exists $N \in \mathbb{N}$ such that $|f(t)|^{\frac{1}{t}} > 1$ for all $t \ge N$. That is |f(t)| > 1 for all $t \ge N$. This show that the integral diverges.

13. (a) Converges : Use the LCT with
$$\frac{1}{\sqrt{t}}$$
.

(b) Converges : Write
$$\int_{0}^{\frac{\pi}{2}} \ln(\sin t) dt = \int_{0}^{\frac{\pi}{2}} [\ln(\frac{\sin t}{t}) + \ln t] dt$$
. Note that $\int_{0}^{\frac{\pi}{2}} \ln(\frac{\sin t}{t}) dt$ is proper integral and use Problem 3(a).

- (c) Converges : Write $\int_{0}^{\infty} \frac{1}{t^2 + \sqrt{t}} dt = \int_{0}^{1} \frac{1}{t^2 + \sqrt{t}} dt + \int_{1}^{\infty} \frac{1}{t^2 + \sqrt{t}} dt.$ Observe that $\frac{1}{t^2 + \sqrt{t}} \leq \frac{1}{\sqrt{t}}$ and $\frac{1}{t^2 + \sqrt{t}} \leq \frac{1}{t^2}$.
- (d) Converges : Use the LCT test with $\frac{1}{\sqrt{t}}$.
- (e) Converges : Take $u = t^3$ and use the Dirichlet test for $\int_1^\infty (3u^{\frac{3}{2}})^{-1} \sin u du$.
- (f) Converges : Observe that, for x > a, $\left|\int_{a}^{x} e^{\sin t} \sin 2t dt\right| \le 8e$ and use the Dirichlet test.
- (g) Converges : Using the substitution $u = t^2$ leads to the integral $\frac{1}{2} \int_1^\infty \sin u^2 du$.
- (h) Diverges : Use the LCT with $\frac{1}{t^3}$.
- (i) Converges absolutely : Use the comparison test with $\frac{6}{t^2}$.
- (j) Diverges: Observe that $\sqrt{1 \cos t} = \sqrt{2} \sin \frac{t}{2}$ and use the LCT with $\frac{1}{t}$.
- (k) Diverges: Apply the Root test.
- (l) Converges: Apply the Root test.
- 14. Let $f(t) = e^{-t}t^{p-1}$. Suppose $I_1 = \int_0^1 f(t)dt$ and $I_2 = \int_1^\infty f(t)dt$. By Problem 11 (d), I_2 converges for all $p \in (0, \infty)$. If $p \ge 1$, then f is bounded on (0, 1] and hence I_1 converges. If p < 1, use LCT with $\frac{1}{t^{1-p}}$ and verify that I_1 converges for 1 p < 1; that is for p > 0.