1. Find the area of the region enclosed by $y=\cos x, y=\sin x x=\frac{\pi}{2}$ and $x=0$.
2. Consider the curves $y=x^{3}-9 x$ and $y=9-x^{2}$.
(a) Show that the curves intersect at $(-3,0),(-1,8)$ and $(3,0)$.
(b) Find the area of the region bounded by the curves.
3. Sketch the graphs of the following polar equations:
(a) $r=\cos \theta$
(b) $r=-\cos \theta$
(c) $r=\sin \theta$
(d) $r=-\sin \theta$.
4. Sketch the limacons (convex or oval limacons, limacons with dimples, cardiods and limacons with inner loops).
(a) $r=3+\cos \theta$
(b) $r=\frac{3}{2}+\cos \theta$
(c) $r=1+\cos \theta$
(d) $r=\frac{1}{2}+\cos \theta$
(e) $r=3-\cos \theta$
(f) $r=\frac{3}{2}-\cos \theta$
(g) $r=1-\cos \theta$
(h) $r=\frac{1}{2}-\cos \theta$
(i) $r=3+\sin \theta$
(j) $r=\frac{3}{2}+\sin \theta$
(k) $r=1+\sin \theta$
(1) $r=\frac{1}{2}+\sin \theta$
(m) $r=3-\sin \theta$
(n) $r=\frac{3}{2}-\sin \theta$
(o) $r=1-\sin \theta$
(p) $r=\frac{1}{2}-\sin \theta$
5. Sketch the roses:
(a) $r=\sin 2 \theta$
(b) $r=\sin 3 \theta$
(c) $r=\sin 4 \theta$
(d) $r=\sin 5 \theta$
(e) $r=\cos 2 \theta$
(f) $r=\cos 3 \theta$
(g) $r=\cos 4 \theta$
(h) $r=\cos 5 \theta$
6. Consider the equations $r=2+\sin \theta$ and $r=-2+\sin \theta$.
(a) Show that both the equations describe the same curve.
(b) Sketch the curve.
7. Consider the equations $r=\sin \frac{\theta}{2}$ and $r=\cos \frac{\theta}{2}$.
(a) Show that if (r, θ) satisfies the equation $r=\sin \frac{\theta}{2}$ then its one of the other representations $(-r, \theta+\pi)$ satisfies the equation $r=\cos \frac{\theta}{2}$.
(b) Show that both the equations describe the same curve and sketch the curve.
(c) Observe from the graph that the curve is symmetric with respect to both x -axis and y-axis.
8. Sketch the following curves:
(a) $r=2+\sin (2 \theta)$
(b) $r^{2}=-\sin \theta$
(c) $r=\theta, \theta \geq 0$
(d) $r=\theta, \theta \leq 0$
(e) $r=\theta$
(f) $r=-\theta$
9. Consider the equation $r=\theta+2 \pi$.
(a) Observe that the equation changes if (r, θ) is replaced by $(r, \pi-\theta)$ or $(-r,-\theta)$.
(b) Show that the equation given above and $r=\theta$ describe the same curve (Spiral of Archimedes).
(c) Show that the curve obtained is symmetric with respect to the y-axis.
10. Sketch the regions described by the following sets.
(a) $\left\{(r, \theta): 1 \leq r \leq 1-2 \cos \theta, \frac{\pi}{2} \leq \theta \leq 3 \frac{\pi}{2}\right\}$
(b) $\left\{(r, \theta): 1+\cos \theta \leq r \leq 3 \cos \theta, \frac{-\pi}{3} \leq \theta \leq 0\right\}$
11. Replace the equation $x^{2}+y^{2}-4 y=0$ by equivalent polar equation.
12. Replace the equation $r=6 \cos \theta+8 \sin \theta$ by equivalent Cartesian equation and show that the equation describe a circle.

Practice Problems 19 : Hints/Solutions

1. Solving $\sin x=\cos x$ implies that $x=\frac{\pi}{4} \in\left[0, \frac{\pi}{2}\right]$ (see Figure 1). Therefore the required area is $\int_{0}^{\frac{\pi}{4}}(\cos x-\sin x) d x+\int_{\frac{\pi}{4}}^{\frac{\pi}{2}}(\sin x-\cos x) d x=2 \sqrt{2}-2$.
2. (a) Note that $x^{3}-9 x-9+x^{2}=(x+3)(x+1)(x-3)$.
(b) Area $=\int_{-3}^{1}\left[\left(x^{3}-9 x\right)-\left(9-x^{2}\right)\right] d x+\int_{-1}^{3}\left[\left(9-x^{2}\right)-\left(x^{3}-9 x\right)\right] d x \quad$ (see Figure 2).
3. See Figure 3.
4. See Figure 4 for the graphs of the equations given in (a)-(d),

Observe that the graphs of the equations given in (e)-(h) are obtained by rotating the curves described by the equations given in (a)-(d) counterclockwise by π. For example, $r=3-\cos \theta=3+\cos (\theta-\pi)$.
Similarly, the graphs of the equations given in (i)-(p) are obtained by rotating the curves described by the equations given in (a)-(h) counterclockwise by $\frac{\pi}{2}$. For example, $r=$ $3+\sin \theta=3+\cos \left(\theta-\frac{\pi}{2}\right)$.
5. See Figure 5.
6. (a) Observe that both the curves are symmetric with respect to the y-axis. Moreover, if (r, θ) satisfies the equation $r=2+\sin \theta$ then $(-r,-\theta)$ satisfies the equation $r=$ $-2+\sin \theta$ and vice versa. Therefore both the equations describe the same curve.
(b) Refer Figure 6 for the graph.
7. (a) Easy to verify.
(b) From (a), it follows that both the equations describe the same curve. Refer Figure 7 for the graph.
(c) The symmetry is shown in the figure.

8. See Figure 8

9. It is easy to verify.
10. See Figure 10.
11. Substituting $x=r \cos \theta$ and $y=r \sin \theta$ in the given equation leads to the equation $r(r-$ $4 \sin \theta)=0$. The equation $r=0$ represents the origin which is included in the curve described by the equation $r=4 \sin \theta$. The required equation is $r=4 \sin \theta$.
12. The given equation can be written as $r^{2}-6 r \cos \theta-8 r \sin \theta=0$. The substitutions, $x=r \cos \theta, y=r \sin \theta$ and $r^{2}=x^{2}+y^{2}$ lead to the equation $(x-3)^{2}+(y-4)^{2}=25$.
