Practice Problems 2: Convergence of sequences and monotone sequences

1. Investigate the convergence of the sequence $\left(x_{n}\right)$ where
(a) $x_{n}=\frac{1}{1+n^{2}}+\frac{2}{2+n^{2}}+\ldots+\frac{n}{n+n^{2}}$.
(b) $x_{n}=\left(a^{n}+b^{n}\right)^{1 / n}$ where $0<a<b$.
(c) $x_{n}=\left(\sqrt{2}-2^{\frac{1}{3}}\right)\left(\sqrt{2}-2^{\frac{1}{5}}\right) \ldots\left(\sqrt{2}-2^{\frac{1}{2 n+1}}\right)$.
(d) $x_{n}=n^{\alpha}-(n+1)^{\alpha}$ for some $\alpha \in(0,1)$.
(e) $x_{n}=\frac{2^{n}}{n!}$.
(f) $x_{n}=\frac{1-2+3-4+\cdots+(-1)^{n-1} n}{n}$.
2. Let $x_{n}=(-1)^{n}$ for all $n \in \mathbb{N}$. Show that the sequence $\left(x_{n}\right)$ does not converge.
3. Let A be a non-empty subset of \mathbb{R} and $\alpha=\inf A$. Show that there exists a sequence (a_{n}) such that $a_{n} \in A$ for all $n \in \mathbb{N}$ and $a_{n} \rightarrow \alpha$.
4. Let $x_{0} \in \mathbb{Q}$. Show that there exists a sequence $\left(x_{n}\right)$ of irrational numbers such that $x_{n} \rightarrow x_{0}$.
5. Let $\left(x_{n}\right)$ be a sequence in \mathbb{R}. Prove or disprove the following statements.
(a) If $x_{n} \rightarrow 0$ and $\left(y_{n}\right)$ is a bounded sequence then $x_{n} y_{n} \rightarrow 0$.
(b) If $x_{n} \rightarrow \infty$ and (y_{n}) is a bounded sequence then $x_{n} y_{n} \rightarrow \infty$.
6. Let $\left(x_{n}\right)$ be a sequence in \mathbb{R}. Prove or disprove the following statements.
(a) If the sequence $\left(x_{n}+\frac{1}{n} x_{n}\right)$ converges then $\left(x_{n}\right)$ converges.
(b) If the sequence $\left(x_{n}^{2}+\frac{1}{n} x_{n}\right)$ converges then $\left(x_{n}\right)$ converges.
7. Show that the sequence $\left(x_{n}\right)$ is bounded and monotone, and find its limit where
(a) $x_{1}=2$ and $x_{n+1}=2-\frac{1}{x_{n}}$ for $n \in \mathbb{N}$.
(b) $x_{1}=\sqrt{2}$ and $x_{n+1}=\sqrt{2 x_{n}}$ for $n \in \mathbb{N}$.
(c) $x_{1}=1$ and $x_{n+1}=\frac{4+3 x_{n}}{3+2 x_{n}}$, for $n \in \mathbb{N}$.
8. Let $0<b_{1}<a_{1}$ and define $a_{n+1}=\frac{a_{n}+b_{n}}{2}$ and $b_{n+1}=\sqrt{a_{n} b_{n}}$ for all $n \in \mathbb{N}$. Show that both $\left(a_{n}\right)$ and $\left(b_{n}\right)$ converge.
9. Let $a>0$ and $x_{1}>0$. Define $x_{n+1}=\frac{1}{2}\left(x_{n}+\frac{a}{x_{n}}\right)$ for all $n \in \mathbb{N}$. Show that the sequence $\left(x_{n}\right)$ converges to \sqrt{a}.
10. Let $\left(x_{n}\right)$ be a sequence in $(0,1)$. Suppose $4 x_{n}\left(1-x_{n+1}\right)>1$ for all $n \in \mathbb{N}$. Show that the sequence is monotone and find the limit.
11. Let A be a non-empty subset of \mathbb{R} and $x_{0} \in \mathbb{R}$. Show that there exists a sequence $\left(a_{n}\right)$ in A such that $\left|x_{0}-a_{n}\right| \rightarrow d\left(x_{0}, A\right)$. Recall that $d\left(x_{0}, A\right)=\inf \left\{\left|x_{0}-a\right|: a \in A\right\}$.
12. Let $\left(a_{n}\right)$ be a bounded sequence. For every $n \in \mathbb{N}$, define $x_{n}=\sup \left\{a_{k}: k>n\right\}$. Show that the sequence $\left(x_{n}\right)$ converges.
13. (*) Show that the sequence $\left(e_{n}\right)$ defined by $e_{n}=\left(1+\frac{1}{n}\right)^{n}$ is increasing and bounded above.

Practice Problems2: Hints/Solutions

1. (a) Since $(1+2+\ldots+n) \frac{1}{n+n^{2}} \leq x_{n} \leq(1+2+\ldots+n) \frac{1}{1+n^{2}}, x_{n} \rightarrow \frac{1}{2}$
(b) Note that $b=\left(b^{n}\right)^{1 / n} \leq x_{n} \leq\left(2 b^{n}\right)^{1 / n}=2^{1 / n} b \rightarrow b$. Therefore $x_{n} \rightarrow b$.
(c) We have $0<x_{n}<(\sqrt{2}-1)^{n}$ and hence $x_{n} \rightarrow 0$.
(d) Observe that $-x_{n}=n^{\alpha}\left[\left(1+\frac{1}{n}\right)^{\alpha}-1\right]<n^{\alpha}\left[1+\frac{1}{n}-1\right]=\frac{1}{n^{1-\alpha}} \rightarrow 0$. Hence $x_{n} \rightarrow 0$.
(e) Consider $\frac{x_{n+1}}{x_{n}}$ and apply the ratio test for sequences to conclude that $x_{n} \rightarrow 0$.
(f) Here $x_{2 n}=-\frac{1}{2}$ and $x_{2 n+1}=\frac{n+1}{2 n+1} \rightarrow \frac{1}{2}$. The sequence does not converge.
2. Suppose $x_{n} \rightarrow x_{0}$ for some x_{0}. Then, by the definition, for $\epsilon=\frac{1}{4}$ (why $\frac{1}{4}$?) there exists N such that $\left|x_{n}-x_{0}\right|<\frac{1}{4}$ for all $n \geq N$. Then for all $m, n \geq N,\left|x_{n}-x_{m}\right| \leq\left|x_{n}-x_{0}\right|+\left|x_{m}-x_{0}\right| \leq$ $\frac{1}{4}+\frac{1}{4}=\frac{1}{2}$ which is not true because $\left|x_{n}-x_{n+1}\right|=2$ for any n.
3. Since $\alpha+\frac{1}{n}$ is not a l.b., find $a_{n} \in A$ such that $\alpha \leq a_{n}<\alpha+\frac{1}{n}$. Allow $n \rightarrow \infty$.
4. Find an irrational x_{n} satisfying $x_{0}<x_{n}<x_{0}+\frac{1}{n}$ for every $n \in \mathbb{N}$. Allow $n \rightarrow \infty$.
5. (a) True. Find $M \in \mathbb{N}$ such that $0 \leq\left|x_{n} y_{n}\right|<M\left|x_{n}\right|$. Allow $n \rightarrow \infty$.
(b) False. Take $x_{n}=n$ and $y_{n}=\frac{1}{n}$.
6. (a) Let $y_{n}=x_{n}+\frac{1}{n} x_{n}=\left(1+\frac{1}{n}\right) x_{n}$. Then $x_{n}=\frac{y_{n}}{\left(1+\frac{1}{n}\right)}$. Hence $\left(x_{n}\right)$ converges if $\left(y_{n}\right)$ converges.
(b) The statement is not true. Take, for example, $x_{n}=(-1)^{n}$.
7. (a) Observe that $x_{2}<x_{1}$. If $x_{n}<x_{n-1}$, then $x_{n+1}<2-\frac{1}{x_{n-1}}=x_{n}$. The sequence is decreasing. Note that $x_{n}>0$. The sequence converges and the limit is 1 .
(b) Observe that $x_{2}>x_{1}$. Since $x_{n+1}^{2}-x_{n}^{2}=2\left(x_{n}-x_{n-1}\right)$, by induction $\left(x_{n}\right)$ is increasing. It can be observed again by induction that $x_{n} \leq 2$. The limit is 2 .
(c) Note that $x_{2}>x_{1}$. Since $x_{n+1}-x_{n}=\frac{x_{n}-x_{n-1}}{\left(3+2 x_{n}\right)\left(3+2 x_{n-1}\right)}$, by induction $\left(x_{n}\right)$ is increasing. Note that $x_{n+1}=1+\frac{1+x_{n}}{3+2 x_{n}} \leq 2$. The limit is $\sqrt{2}$.
8. By the AM-GM inequality $b_{n} \leq a_{n}$. Therefore $0 \leq a_{n+1} \leq \frac{a_{n}+a_{n}}{2}=a_{n}$. Note that $b_{n+1} \geq \sqrt{b_{n} b_{n}}=b_{n}$ and $b_{n} \leq a_{n} \leq a_{1}$. Use monotone criterion for both $\left(a_{n}\right)$ and $\left(b_{n}\right)$.
9. Note that $x_{n}>0$ and $x_{n+1}-x_{n}=\frac{1}{2}\left(x_{n}+\frac{a}{x_{n}}\right)-x_{n}=\frac{1}{2}\left(\frac{a-x_{n}^{2}}{x_{n}}\right)$. Further, by the A.M -G.M. inequality, $x_{n+1} \geq \sqrt{a}$. Therefore $\left(x_{n}\right)$ is decreasing and bounded below.
10. By the AM-GM inequality $\frac{x_{n}+\left(1-x_{n+1}\right)}{2} \geq \sqrt{x_{n}\left(1-x_{n+1}\right)}>\frac{1}{2}$. Therefore $x_{n}>x_{n+1}$. Suppose $x_{n} \rightarrow x_{0}$ for some x_{0}. Then $4 x_{0}\left(1-x_{0}\right) \geq 1$ which implies that $\left(2 x_{0}-1\right)^{2} \leq 0$. Therefore $x_{0}=\frac{1}{2}$.
11. Use Problem 2 or follow the steps of the solution of Problem 2.
12. Observe that the sequence $\left(x_{n}\right)$ is decreasing and bounded.
13. By binomial theorem $e_{n}=1+1+\frac{1}{2!}\left(1-\frac{1}{n}\right)+\frac{1}{3!}\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right)+\ldots+\frac{1}{n!}\left(1-\frac{1}{n}\right) \ldots\left(1-\frac{n-1}{n}\right) \leq e_{n+1}$ and $e_{n} \leq 2+\frac{1}{2!}+\frac{1}{3!}+\ldots+\frac{1}{n!} \leq 2+\frac{1}{2}+\frac{1}{2^{2}}+\ldots+\frac{1}{2^{n-1}} \leq 3$.
Alternate Solution: For each $n \in \mathbb{N}$, apply AM-GM inequality for $a_{1}=1, a_{2}=a_{3}=\ldots .=$ $a_{n+1}=1+\frac{1}{n}$. We get $e_{n+1}>e_{n}$.
