1. Consider the curves $r=\cos 2 \theta$ and $r=\frac{1}{2}$.
(a) Find the points of intersection of the curves.
(b) Show that $\left(-\frac{1}{2}, \frac{\pi}{3}\right),\left(-\frac{1}{2}, \frac{2 \pi}{3}\right),\left(-\frac{1}{2}, \frac{4 \pi}{3}\right)$ and $\left(-\frac{1}{2}, \frac{5 \pi}{3}\right)$ satisfy the equations $r=-\frac{1}{2}$ and $r=\cos 2 \theta$.
2. Find the areas of the regions enclosed by the following curves.
(a) $r=1+\cos \theta$
(b) $r^{2}=9 \cos 2 \theta$
(c) $r=3 \sin 3 \theta$
3. In each of the following cases, find the area of the region that lies inside both the curves.
(a) $r=2, r=4 \sin \theta$
(b) $r=2 \sin \theta, r=2-2 \sin \theta$
(c) $r=3, r=6 \cos 2 \theta$.
4. In each of the following cases, find the area of the region that lies inside the first curve and outside the second curve.
(a) $r=2, r=4 \sin \theta$.
(b) $r=2 \sin \theta, r=2-2 \sin \theta$
5. Find the areas of the regions described by the following sets.
(a) $\left\{(r, \theta): 0 \leq r \leq 2 \sin \theta, 0 \leq \theta \leq \frac{\pi}{6}\right\} \bigcup\left\{(r, \theta): 0 \leq r \leq 2-2 \sin \theta, \frac{\pi}{6} \leq \theta \leq \frac{\pi}{2}\right\}$
(b) $\left\{(r, \theta): 0 \leq r \leq 2 \sin 2 \theta, 0 \leq \theta \leq \frac{\pi}{12}\right\} \bigcup\left\{(r, \theta): 0 \leq r \leq 1, \frac{\pi}{12} \leq \theta \leq \frac{\pi}{4}\right\}$
6. Find the area of the region inside the outer loop and outside the inner loop of $r=2+4 \cos \theta$.
7. The base of a solid is the region bounded by $x=0, y=0, x=\frac{\pi}{2}$ and the curve $y=\sin x$. Each cross section of the solid perpendicular to the x -axis is an equilateral triangle with one side in the base of the solid. Find the volume of the solid.
8. A pyramid has a square base. Suppose the height of the pyramid is 4 meters and the side of the square base is 2 meters. Determine the volume of the pyramid by slicing method.
9. Consider the sphere of radius r centered at 0 and the two great circles of the sphere lying on the $x y$ and $x z$ planes. A part of the sphere is shaved off in a such a manner that the cross section of the remaining part, perpendicular to the x-axis, is a square with vertices on the great circles. Compute the volume of the remaining part.
10. Find the volume of the solid enclosed by the cylinders $x^{2}+y^{2}=1$ and $x^{2}+z^{2}=1$.
11. Find the volume of the solid enclosed by the ellipsoid $\frac{x^{2}}{9}+\frac{y^{2}}{4}+z^{2}=1$ and the planes $y=\sqrt{3}$ and $y=1$.

Practice Problems 20 : Hints/Solutions

1. Solving $r=\cos 2 \theta$ and $r=\frac{1}{2}$ gives $\theta=\frac{\pi}{6}+\pi k$ and $\theta=\frac{5 \pi}{6}+\pi k, k \in \mathbb{Z}$. Therefore we get, $\theta=\frac{\pi}{6}, \frac{5 \pi}{6}, \frac{7 \pi}{6}$ and $\frac{11 \pi}{6}$. By symmetry, we see that the points of intersection occur at $\theta=\frac{\pi}{3}, \frac{2 \pi}{3}, \frac{4 \pi}{3}$ and $\frac{5 \pi}{3}$ (see Figure 1). We can also see, by solving the equations $r=-\frac{1}{2}$ and $r=\cos 2 \theta$, that the points of intersection occur at $\theta=\frac{\pi}{3}+\pi k$ and $\theta=\frac{2 \pi}{3}+\pi k, k \in \mathbb{Z}$, that is $\theta=\frac{\pi}{3}, \frac{2 \pi}{3}, \frac{4 \pi}{3}$ and $\frac{5 \pi}{3}$.
2. (a) The area is $\int_{0}^{2 \pi} \frac{1}{2}(1+\cos \theta)^{2} d \theta$. See Figure 2(a)
(b) The area is $4 \int_{0}^{\frac{\pi}{4}} \frac{1}{2}(9 \cos 2 \theta) d \theta$. See Figure $2(\mathrm{~b})$
(c) The area is $3 \int_{0}^{\frac{\pi}{3}} \frac{1}{2}(3 \sin 3 \theta)^{2} d \theta$. See Figure $2(\mathrm{c})$
3. (a) Solving $2=4 \sin \theta$ and $\theta \in\left[0, \frac{\pi}{2}\right]$ implies that $\theta=\frac{\pi}{6}$. The required area is $2\left[\int_{0}^{\frac{\pi}{6}} \frac{1}{2} 4^{2} \sin ^{2} \theta d \theta+\int_{\frac{\pi}{6}}^{\frac{\pi}{6}} \frac{1}{2} 2^{2} d \theta\right]$. See Figure $3(\mathrm{a})$.
(b) Solving $2 \sin \theta=2-2 \sin \theta$ and $\theta \in\left[0, \frac{\pi}{2}\right]$ implies that $\theta=\frac{\pi}{6}$. The required area is $2\left[\int_{0}^{\frac{\pi}{6}} \frac{1}{2}(2 \sin \theta)^{2} d \theta+\frac{1}{2} \int_{\frac{\pi}{6}}^{\frac{\pi}{2}}(2-2 \sin \theta)^{2} d \theta\right]$. See Figure $3(\mathrm{~b})$
(c) Solving $6 \cos 2 \theta=3$ and $\theta \in\left[0, \frac{\pi}{2}\right]$ implies that $\theta=\frac{\pi}{6}$. The required area is $8\left[\int_{0}^{\frac{\pi}{6}} \frac{1}{2} 3^{2} d \theta+\int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \frac{1}{2}(6 \cos 2 \theta)^{2} d \theta\right]$. See Figure $3(\mathrm{c})$
4. (a) Solving $2=4 \sin \theta$ implies that $\theta=\frac{\pi}{6}$ and $\theta=\frac{5 \pi}{6}$. The area is $\int_{\frac{\pi}{6}}^{\frac{5 \pi}{6}} \frac{1}{2}\left(16 \sin ^{2} \theta-4\right) d \theta$. See Figure 4(a).
(b) Solving $2 \sin \theta=2-2 \sin \theta$ and $\theta \in\left[0, \frac{\pi}{2}\right]$ implies that $\theta=\frac{\pi}{6}$. The required area is $2 \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \frac{1}{2}\left[4 \sin ^{2} \theta-(2-2 \sin \theta)^{2}\right] d \theta$. See Figure $4(\mathrm{~b})$
5. (a) Solving $2 \sin \theta=2-2 \sin \theta$ and $\theta \in\left[0, \frac{\pi}{2}\right]$ implies that $\theta=\frac{\pi}{6}$. The required area is $\int_{0}^{\frac{\pi}{6}} \frac{1}{2}(2 \sin \theta)^{2} d \theta+\frac{1}{2} \int_{\frac{\pi}{6}}^{\frac{\pi}{2}}(2-2 \sin \theta)^{2} d \theta$. See Figure $5(\mathrm{a})$
(b) Solving $2 \sin 2 \theta=1$ and $\theta \in\left[0, \frac{\pi}{2}\right]$ implies that $\theta=\frac{\pi}{12}$. The required area is $\int_{0}^{\frac{\pi}{12}} \frac{1}{2}(2 \sin 2 \theta)^{2} d \theta+\frac{1}{2} \int_{\frac{\pi}{12}}^{\frac{\pi}{4}} d \theta$. See Figure $5(\mathrm{~b})$
6. Solving $r=0$ and $r=2+4 \cos \theta$ gives that $\theta=\frac{2 \pi}{3}$ and $\theta=\frac{4 \pi}{3}$. See Figure 6. The required area is $2\left[\int_{0}^{\frac{2 \pi}{3}} \frac{1}{2}(2+4 \cos \theta)^{2} d \theta-\int_{\pi}^{\frac{4 \pi}{3}} \frac{1}{2}(2+4 \cos \theta)^{2} d \theta\right]$ or $2\left[\int_{0}^{\frac{2 \pi}{3}} \frac{1}{2}(2+4 \cos \theta)^{2} d \theta-\int_{\frac{2 \pi}{3}}^{\pi} \frac{1}{2}(2+4 \cos \theta)^{2} d \theta\right]$.
7. For every $x \in\left[0, \frac{\pi}{2}\right], A(x)=\frac{\sqrt{3}}{4} \sin ^{2} x$. The volume is $\int_{0}^{\frac{\pi}{2}} A(x) d x=\frac{\sqrt{3}}{16} \pi$. See Figure 7 .
8. Let the pyramid be as in Figure 8. The area of the cross section (of the solid) by the plane $x=t$ is $A(t)=\frac{t^{2}}{4}$. The required volume is $\int_{0}^{4} A(t) d t$.
9. The cross section of the solid by the plane $x=t$ is a square with side $\sqrt{2\left(r^{2}-t^{2}\right)}$. Hence the area of the cross section $A(t)=2\left(r^{2}-t^{2}\right)$. The required volume is $\int_{-r}^{r} A(t) d t=\frac{8 r^{3}}{3}$. See Figure 9.
10. See Figure 10. Observe that the solid lies between the planes $x=-1$ and $x=1$. For any fixed $t \in[-1,1]$ the cross section of the solid by the plane $x=t$ is a square given by $\left\{(t, y, z):|y| \leq \sqrt{1-t^{2}}\right.$ and $\left.|z| \leq \sqrt{1-t^{2}}\right\}$. Therefore the area of the cross section $A(t)=4\left(1-t^{2}\right)$. The required volume is $\int_{-1}^{1} A(t) d t=4 \int_{-1}^{1}\left(1-t^{2}\right) d t=\frac{16}{3}$.
11. For any $t \in[1, \sqrt{3}]$, the cross section of the solid by the plane $y=t$ is the ellipse $\frac{x^{2}}{9}+z^{2}=$ $1-\frac{t^{2}}{4}$ and its area $A(t)$ is $3 \pi\left(1-\frac{t^{2}}{4}\right)$. The required volume is $\int_{1}^{\sqrt{3}} 3 \pi\left(1-\frac{t^{2}}{4}\right) d t$.
