1. Find the volume of the solid generated by revolving the region bounded by the the curves $y=x^{2}$ and $x=y^{2}$ about the y -axis.
2. Let S denote the solid hemisphere $x^{2}+y^{2}+z^{2} \leq 4, y \geq 0$ and C denote the cone generated by revolving the line $\sqrt{3} y=x$ around the y-axis. Find the volume of the portion of S that lies inside C.
3. Consider the region R in the plane bounded by $y=\sin x, y=0$ and $x=\frac{\pi}{2}$. Using washer method, find the volume of the solid generated by revolving R about the y -axis.
4. Let R be the region bounded by $y=6 \cos x, y=e^{x}, x=0$ and $x=\frac{\pi}{6}$. Using washer method, evaluate the volume of the solid generated by revolving R around the line $y=7$
5. Let R be the region enclosed by $y=e^{x^{2}}, x=1, x=0$ and $y=0$. The region R is revolved about the y-axis. Find the volume of the solid generated.
6. Find the volume of the solid generated by revolving the region bounded by $(y-2)^{2}=4-x$ and $x=0$ about the x-axis.
7. A cylindrical hole of radius $\sqrt{3}$ is drilled through the center of the solid sphere of radius 2. Compute the volume of the remaining solid using the Shell Method.
8. Let R be the region bounded by $y=2 \sqrt{x-1}$ and $y=x-1$. Find the volume of the solid generated by revolving R about the line $x=7$ using
(a) the Washer Method
(b) the Shell Method.
9. Let C denote the circular disc of radius b centered at $(a, 0)$ where $0<b<a$. Find the volume of the torus that is generated by revolving C around the y-axis using
(a) the Washer Method
(b) the Shell Method.
10. Find the lengths of the following curves.
(a) $y=\frac{2}{3}\left(x^{2}+1\right)^{\frac{3}{2}}, x \in[1,5]$
(b) $x(t)=3 \sin (2 t)-6 t$ and $y(t)=6 \sin ^{2} t, 0 \leq t \leq \frac{\pi}{2}$
(c) $r=\sin ^{2}\left(\frac{\theta}{2}\right), \quad 0 \leq \theta \leq \pi$.
11. Let $f:[0, \infty) \rightarrow \mathbb{R}$ be differentiable and increasing function such that $f(0)=1$. Let $s(x)$ denote the length of the curve $y=f(x)$ from the point $(0,1)$ to $(x, f(x)), x>0$. Suppose $s(x)=2 x$ for all $x \in[0, \infty)$. Evaluate $f(x)$.
12. Consider the curve $r=e^{-\theta}, \theta \in[0, \infty)$. Sketch the curve and show that $\int_{0}^{\infty} \sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}} d \theta=$ $\sqrt{2}$.
13. Consider the curve $r=\frac{1}{1+\theta}, \theta \in[0, \infty)$. Sketch the curve and show that $\int_{0}^{\infty} \sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}} d \theta$ does not exist.

$\underline{\text { Practice Problems } 21 \text { : Hints/Solutions }}$

1. Solving $y^{2}=\sqrt{y}$ implies that $y=0$ or $y=1$. The required volume is $\int_{0}^{1} \pi\left[(\sqrt{y})^{2}-\left(y^{2}\right)^{2}\right] d y$. See Figure 1.
2. The volume of the portion of S that lies outside C, evaluated by the Washer Method, is $\int_{0}^{1} \pi\left(4-y^{2}-3 y^{2}\right) d y=\frac{8 \pi}{3}$. The required volume is $\frac{16 \pi}{3}-\frac{8 \pi}{3}$. See Figure 2.
3. The required volume $V=V_{1}-V_{2}$ where $V_{1}=\pi \int_{0}^{1}\left(\frac{\pi}{2}\right)^{2} d y$ and $V_{2}=\pi \int_{0}^{1}\left(\sin ^{-1} y\right)^{2} d y$. The substitution $t=\sin ^{-1} y$ gives that $V_{2}=\pi \int_{0}^{\frac{\pi}{2}} t^{2} \cos t d t$ which can be evaluated using integration by parts. See Figure 3.
4. For $x \in\left[0, \frac{\pi}{6}\right], 7>6 \cos x \geq 6 \cos \frac{\pi}{6}=6 \frac{\sqrt{3}}{2}>e>e^{\frac{\pi}{6}} \geq e^{x}$. Therefore the required volume is $\int_{0}^{\frac{\pi}{6}} \pi\left[\left(7-e^{x}\right)^{2}-(7-6 \cos x)^{2}\right] d x$. See Figure 4 .
5. By the Shell Method, the required volume is $\int_{0}^{1} 2 \pi x e^{x^{2}} d x=\pi \int_{0}^{1} e^{u} d u$.
6. The graph intersects the y-axis at $(0,0)$ and $(0,4)$. The volume, determined by the Shell Method, is $\int_{0}^{4} 2 \pi y\left(4-(y-2)^{2}\right) d y$. See Figure 5.
7. The required volume, determined by the Shell Method, is $\int_{\sqrt{3}}^{2} 2 \pi x 2 y d x=4 \pi \int_{\sqrt{3}}^{2} x \sqrt{4-x^{2}} d x$ $=\frac{4 \pi}{3}$. See Figure 6 .
8. (a) See Figure 7. The volume is $\pi \int_{0}^{4}\left\{\left[7-\left(\frac{y^{2}}{4}+1\right)\right]^{2}-[7-(y+1)]^{2}\right\} d y$.
(b) See Figure 8. The volume is $\int_{1}^{5} 2 \pi(7-x)[(2 \sqrt{x-1}-(x-1)] d x$.
9. (a) See Figure 9. Note that the disc is bounded by the curves $x=a+\sqrt{b^{2}-y^{2}}$ and $x=a-\sqrt{b^{2}-y^{2}}$. The volume of the torus, evaluated by the Washer Method, is $\pi \int_{-b}^{b}\left(\left(a+\sqrt{b^{2}-y^{2}}\right)^{2}-\left(a-\sqrt{b^{2}-y^{2}}\right)^{2}\right) d y=4 a \pi \int_{-b}^{b} \sqrt{b^{2}-y^{2}} d y$. The last integral is the area of the semicircle of radius b. Therefore the volume is $2 \pi^{2} a b^{2}$.
(b) See Figure 10. The volume of the torus is same as the volume of the torus generated by revolving the circular disc $x^{2}+y^{2} \leq b^{2}$ about the line $x=a$. Using the Shell Method, we find that the volume is $\int_{-b}^{b} 2 \pi(a-x)\left(2 \sqrt{b^{2}-x^{2}}\right) d x=$ $4 \pi\left[\int_{-b}^{b} a \sqrt{b^{2}-x^{2}} d x-\int_{-b}^{b} x\left(\sqrt{b^{2}-x^{2}}\right) d x\right]=4 \pi a \int_{-b}^{b} \sqrt{b^{2}-x^{2}} d x$.
10. (a) The length of the curve is $\int_{1}^{5} \sqrt{1+f^{\prime}(x)^{2}} d x=\int_{1}^{5}\left(2 x^{2}+1\right) d x$.
(b) Since $x^{\prime}(t)=-12 \sin ^{2} t$ and $y^{\prime}(t)=12 \sin t \cos t$, the length of the curve is $\int_{0}^{\frac{\pi}{2}} \sqrt{\left(-12 \sin ^{2} t\right)^{2}+(12 \sin t \cos t)^{2}}=\int_{0}^{\frac{\pi}{2}} 12 \sin t d t=12$.
(c) The required length is $\int_{0}^{\pi} \sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}} d \theta=\int_{0}^{\pi} \sqrt{\sin ^{4} \frac{\theta}{2}+\sin ^{2} \frac{\theta}{2} \cos ^{2} \frac{\theta}{2}} d \theta$

$$
=\int_{0}^{\pi} \sqrt{\sin ^{2} \frac{\theta}{2}} d \theta=\int_{0}^{\pi}\left|\sin \frac{\theta}{2}\right| d \theta=2
$$

11. $s(x)=2 x$ implies that $\int_{0}^{x} \sqrt{1+\left(f^{\prime}(t)^{2}\right.} d t=2 x$. By the first FTC, $f(x)=\sqrt{3} x+f(0)$.
12. See Figure 11. Note that $\int_{0}^{\infty} \sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}} d \theta=\int_{0}^{\infty} \sqrt{2} e^{-\theta} d \theta=\sqrt{2}$.
13. See Figure 12. Observe that $\int_{0}^{\infty} \sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}} d \theta=\int_{0}^{\infty} \sqrt{\frac{1}{(1+\theta)^{2}}+\frac{1}{(1+\theta)^{4}}} d \theta=\int_{1}^{\infty} \sqrt{\frac{1}{t^{2}}+\frac{1}{t^{4}}} d t$ which does not exist.
