1. The curve $x=\frac{y^{4}}{4}+\frac{1}{8 y^{2}}, 1 \leq y \leq 2$, is rotated about the y-axis. Find the surface area of the surface generated.
2. Evaluate the area of the surface generated by revolving the curve $y=\frac{x^{3}}{3}+\frac{1}{4 x}, 1 \leq x \leq 3$, about the line $y=-2$.
3. The curve $x(t)=2 \cos t-\cos 2 t, y(t)=2 \sin t-\sin 2 t, 0 \leq t \leq \pi$ is revolved about the x-axis. Calculate the area of the surface generated.
4. Find the area of the surface generated by revolving the curve $r=1+\cos \theta, 0 \leq \theta \leq \pi$ about the x-axis.
5. Consider an equilateral triangle with its base lying on the x-axis and let a be the length of its side. Using Pappus theorem, evaluate the volume of the solid generated by revolving the triangle about the line $y=-a$.
6. Using Pappus theorem evaluate the centroid of the region $D=\left\{(x, y): x^{2}+y^{2} \leq 4, x \geq\right.$ 0 and $y \geq 0\}$.
7. A regular hexagon is inscribed in the circle $(x-2)^{2}+y^{2}=1$. The hexagon is revolved about the y-axis. Find the surface area of the surface generated and the volume of the solid enclosed by the surface.
8. Consider the curve C defined by $x(t)=\cos ^{3}(t), y(t)=\sin ^{3} t, 0 \leq t \leq \frac{\pi}{2}$.
(a) Find the length of the curve.
(b) Find the area of the surface generated by revolving C about the x-axis.
(c) If (\bar{x}, \bar{y}) is the centroid of C then find \bar{y}.
9. The circular disc $(x-4)^{2}+y^{2} \leq 4$ is revolved about the line $y=x$. Find the volume of the solid generated.
10. Consider the semicircular arc $(x-2)^{2}+(y-2)^{2}=4, y \geq 2$. The arc is rotated about the line $y+2 x=0$. Find the area of the surface generated.
11. Let (\bar{x}, \bar{y}) be the centroid of the curve $y=\frac{1}{2}\left(x^{2}+1\right), 0 \leq x \leq 1$. Using Pappus theorem find \bar{x}.
12. (An infinite solid (called Torricelli's Trumpet) with finite volume enclosed by a surface with infinite surface area):

For $a>1$, consider the funnel or trumpet formed by revolving the curve $y=\frac{1}{x}, 1 \leq x \leq a$, about the x-axis. Let V_{a} and S_{a} denote respectively the volume and the surface area of the funnel. Show that $\lim _{a \rightarrow \infty} V_{a}=\pi$ and $\lim _{a \rightarrow \infty} S_{a}=\infty$.
(Similarly, there are curves (for example, Koch snowflake) with infinite arc lengths enclosing regions with finite areas).

1. Surfaces area $=\int_{1}^{2} 2 \pi x \sqrt{1+\left(\frac{d x}{d y}\right)^{2}} d y=\int_{1}^{2} 2 \pi\left(\frac{y^{4}}{4}+\frac{1}{8 y^{2}}\right) \sqrt{1+\left(y^{3}-\frac{1}{4 y^{3}}\right)^{2}} d y$ $\int_{1}^{2} 2 \pi\left(\frac{y^{4}}{4}+\frac{1}{8 y^{2}}\right)\left(y^{3}+\frac{1}{4 y^{3}}\right) d y$.
2. Surfaces area $=\int_{1}^{3} 2 \pi(2+y) \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x=\int_{1}^{3} 2 \pi\left(\frac{x^{3}}{3}+\frac{1}{4 x}+2\right) \sqrt{1+\left(x^{2}-\frac{1}{4 x^{2}}\right)^{2}} d x$ $\int_{1}^{3} 2 \pi\left(\frac{x^{3}}{3}+\frac{1}{4 x}+2\right)\left(x^{2}+\frac{1}{4 x^{2}}\right) d x$.
3. Observe that $x^{\prime}(t)^{2}+y^{\prime}(t)^{2}=8(1-\cos t)$. The surface area is $\int_{0}^{\pi} 2 \pi y(t) \sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}} d t=$ $2 \pi \int_{0}^{\pi} 2 \sin t(1-\cos t) 2 \sqrt{2} \sqrt{(1-\cos t} d t=8 \pi \sqrt{2} \int_{0}^{\pi} \sin t(1-\cos t)^{\frac{3}{2}} d t=\frac{128 \pi}{5}$.
4. The surface area $S=\int_{a}^{b} 2 \pi r \sin \theta \sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}} d \theta=2 \pi \int_{0}^{\pi}(1+\cos \theta) \sin \theta \sqrt{2(1+\cos \theta)} d \theta=$ $2 \pi \int_{0}^{\pi} 2 \cos ^{2} \frac{\theta}{2} 2 \sin \frac{\theta}{2} \cos \frac{\theta}{2} 2 \cos \frac{\theta}{2} d \theta=32 \pi \int_{0}^{\frac{\pi}{2}} \cos ^{4} t \sin t d t$.
5. The required volume $V=2 \pi \rho A=2 \pi \times\left(a+\frac{a}{2 \sqrt{3}}\right) \times \frac{a^{2} \sqrt{3}}{4}$.
6. Since D symmetric about the line $y=x$, the centroid lies on the line $y=x$. Let (\bar{x}, \bar{y}) be the centroid. By Pappus theorem the volume generated by revolving D about the x axis is $2 \pi \rho A$. This implies that $2 \pi \times \bar{y} \times \frac{1}{4} 4 \pi=\frac{16 \pi}{3}$. Therefore, the centroid is $\left(\frac{8}{3 \pi}, \frac{8}{3 \pi}\right)$.
7. Note that, by the symmetry, the centroid of the hexagon is $(2,0)$ (for the curve and region). By Pappus theorem, the volume $V=2 \pi \rho A=2 \pi \times 2 \times \frac{3 \sqrt{3}}{2}$ and the surface area is $2 \pi \rho L=2 \pi \times 2 \times 6$.
8. (a) The length $L=\int_{a}^{b} \sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}} d t=\int_{0}^{\frac{\pi}{2}} 3|\cos t \sin t| d t=\frac{3}{2} \int_{0}^{\frac{\pi}{2}} \sin 2 t d t=\frac{3}{2}$.
(b) The surface area $S=\int_{a}^{b} 2 \pi y(t) \sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}} d t=\int_{0}^{\frac{\pi}{2}} 2 \pi\left(\sin ^{3} t\right)(3 \sin t \cos t) d t=$ $6 \pi \int_{0}^{\frac{\pi}{2}} \sin ^{4} t \cos t d t=\frac{6 \pi}{5}$.
(c) By Pappus theorem $S=2 \pi \bar{y} L$ which implies that $\frac{6 \pi}{5}=2 \pi \bar{y} \frac{3}{2}$. Therefore $\bar{y}=\frac{2}{5}$.
9. By Pappus theorem, the volume is $2 \pi \rho A=2 \pi(2 \sqrt{2})(4 \pi)$.
10. By Pappus theorem, the centroid of the curve is $\left(2, \frac{4}{\pi}+2\right)$ and the surface area is $2 \pi\left(\frac{6 \pi+4}{\sqrt{5} \pi}\right) 2 \pi$.
11. By Pappus theorem, the surface area $S=2 \pi \bar{x} L$ where $S=\int_{a}^{b} 2 \pi x \sqrt{1+\left(\frac{d x}{d y}\right)^{2}} d y=$ $\int_{\frac{1}{2}}^{1} 2 \pi \sqrt{2 y-1} \sqrt{1+\frac{1}{2 y-1}} d y=\int_{\frac{1}{2}}^{1} 2 \pi \sqrt{2} \sqrt{y} d y=\frac{2 \pi}{3}(2 \sqrt{2}-1)$ and $L=\int_{0}^{1} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x=$ $\int_{0}^{1} \sqrt{1+x^{2}} d x=\left[\frac{x}{2} \sqrt{1+x^{2}}+\frac{1}{2} \ln \left(x+\sqrt{1+x^{2}}\right)\right]_{0}^{1}=\frac{1}{2} \sqrt{2}+\frac{1}{2} \ln (1+\sqrt{2})$.
12. $\lim _{a \rightarrow \infty} V_{a}=\int_{1}^{\infty} \pi \frac{1}{x^{2}} d x=\pi$ and $S_{a}=\int_{1}^{a} 2 \pi \frac{1}{x} \sqrt{1+\frac{1}{x^{4}}} d x \geq \int_{1}^{a} 2 \pi \frac{1}{x} d x \rightarrow \infty$ as $a \rightarrow \infty$.
