1. Let $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^{3}$ such that $\mathbf{u} \cdot \mathbf{v}=0$ and $\|\mathbf{u}\|=\|\mathbf{v}\|=1$. Let S denote the plane containing \mathbf{u}, \mathbf{v} and $(0,0,0)$.
(a) Show that every element \mathbf{p} in S can be expressed as $\mathbf{p}=\alpha \mathbf{u}+\beta \mathbf{v}$ for some $\alpha, \beta \in \mathbb{R}$. Further show that $\alpha=\mathbf{p} \cdot \mathbf{u}$ and $\beta=\mathbf{p} \cdot \mathbf{v}$.
(b) Suppose \mathbf{w} is not in S. Show that there exists an element \mathbf{q} in S such that $\mathbf{w}-\mathbf{q}$ is perpendicular to both \mathbf{u} and \mathbf{v}.
2. Find a parametric equation of the line passing through $(5,2,0)$ and that is perpendicular to the plane $4 x-2 y+z=2$.
3. Find a parametric equation of the line of intersection of $x-2 z=3$ and $y+2 z=5$.
4. Find an equation of the plane that contains the line $x=1+2 t, y=t, z=3-t$ and is parallel to the plane $2 x+4 y+8 z=1$.
5. Find an equation of the plane that passes through the point $(6,0,0)$ and contains the line $x=4-2 t, y=2+3 t, z=3+5 t$.
6. Evaluate the distance between the lines $\frac{x-2}{4}=\frac{y-7}{-4}=\frac{z+2}{3}$ and $\frac{x+1}{1}=\frac{y+2}{4}=\frac{z-1}{-3}$.
7. Show that the distance between the point $Q=\left(x_{0}, y_{0}, z_{0}\right)$ and the plane $(x, y, z) \cdot \mathbf{n}=d$ is $\frac{\left|n \cdot\left(x_{0}, y_{0}, z_{0}\right)-d\right|}{\|\mathbf{n}\|}$.
8. Consider the plane $x-2 y+3 z=6$. Show that the plane is expressed parametrically (with parameters s and t) as $X=P_{0}+s\left(X_{0}-P_{0}\right)+t\left(Y_{0}-P_{0}\right)$ where $X=(x, y, z), P_{0}=$ $(6,0,0), X_{0}=(0,-3,0) Y_{0}=(0,0,2)$ and $s, t \in \mathbb{R}$.
9. Let \mathbf{r} denote (x, y, z). Suppose that $r \cdot \mathbf{n}_{1}=d_{1}, \mathbf{r} \cdot \mathbf{n}_{2}=d_{2}$ and $\mathbf{r} \cdot \mathbf{n}_{3}=d_{3}$ are three distinct planes. Show that their intersection is a line if and only if there exist $\alpha, \beta \in \mathbb{R}$ such that $\mathbf{n}_{3}=\alpha \mathbf{n}_{1}+\beta \mathbf{n}_{2}$ and $d_{3}=\alpha d_{1}+\beta d_{2}$.
10. Find an equation for the surface consisting of all points P such that the distance from P to the x-axis is twice the distance from P to the $y z$-plane.
11. Find an equation for the surface consisting of all points that are equidistant from the point $(-1,0,0)$ and the plane $x=1$.
12. Find an equation for the cylinder generated by a line through the curve $x^{2}+y^{2}=4 x, z=0$ moving parallel to the vector $i+j+k$.
13. Find an equation for the surface generated by revolving the curve $4 x^{2}+9 y^{2}=36, z=0$ around the y -axis.
14. (*) Sketch the surfaces by sketching the cross sections cut from the surfaces by the planes $x=0, y=0$ and $z=1$.
(a) $z=x^{2}$ (Cylinder)
(b) $x^{2}+y^{2}=4$ (Circular Cylinder)
(c) $4 z=x^{2}+y^{2}$ (Paraboloid)
(d) $4 z^{2}=x^{2}+y^{2}$ (Circular cone(s))
(e) $z=5-\sqrt{x^{2}+y^{2}}$ (Circular cone)
15. (*) Sketch the surface $4 z=y^{2}-x^{2}$ by sketching the cross sections cut from the surface by the planes $x=0, y=-1, y=0$ and $y=1$.

$\underline{\text { Practice Problems } 23: \text { Hints/Solutions }}$

1. (a) Let \mathbf{a} be the projection of \mathbf{p} on to the line joining \mathbf{u} and $(0,0,0)$. Write $\mathbf{p}=\mathbf{a}+(\mathbf{p}-\mathbf{a})$. Observe that $\mathbf{a}=(\mathbf{p} \cdot \mathbf{u}) \mathbf{u}$ and $(\mathbf{p}-\mathbf{a}) \cdot \mathbf{u}=0$.
(b) Note that $(\mathbf{w} \cdot \mathbf{u}) \mathbf{u}+(\mathbf{w} \cdot \mathbf{v}) \mathbf{v}$ lies in S and that $\mathbf{w}-[(\mathbf{w} \cdot \mathbf{u}) \mathbf{u}+(\mathbf{w} \cdot \mathbf{v}) \mathbf{v}]$ is perpendicular to both \mathbf{u} and \mathbf{v}.
2. The line is parallel to the normal vector of the plane. A parametric equation of the line is $(x, y, z)=(5,2,0)+t(4,-2,1)$.
3. Note that a point (x, y, z) lies on the line $\Leftrightarrow(x, y, z)=(3+2 z, 5-2 z, z)=(3,5,0)+$ $z(2,-2,1)$. Therefore a parametric equation of the line is $(x, y, z)=(3,5,0)+t(2,-2,1), t \in$ \mathbb{R}. One can also obtain the direction of the line $(2,-2,1)$ by taking the cross product of the normals of the planes.
4. Note that the line passes through $(1,0,3)$ and is parallel to the vector $\mathbf{P}=(2,1,-1)$. Observe that the normal \mathbf{n} of the required plane is $(2,4,8)$ and $\mathbf{n} . \mathbf{P}=0$. Therefore an equation of the required plane is $(x, y, z) \cdot(2,4,8)=(1,0,3) \cdot(2,4,8)$.
5. Note that $(6,0,0)$ does not lie on the line as $t=-1$ gives $(6,-1,-2)$. The line passes through $(4,2,3)$ and is parallel to the vector $(-2,3,5)$. So a normal vector \mathbf{n} for the plane is $[(6,0,0)-(4,2,3)] \times(-2,3,5)$. An equation of the plane is $(x, y, z) \cdot \mathbf{n}=(6,0,0) \cdot \mathbf{n}$.
6. Both the lines are perpendicular to the vector $(4,-4,3) \times(1,4,-3)=(0,15,20)=5(0,3,4)$. The vector $(3,9,-3)$ joins the points $(2,7,-2)$ and $(-1,-2,1)$ which lie on the first and the second lines respectively. The required distance is $(3,9,-3) \cdot \frac{1}{5}(0,3,4)=3$.
7. Let P be any point on the plane. Let Q^{\prime} be the point of intersection of the plane and the line passing through Q and parallel to \mathbf{n}. The required distance is obtained by projecting of the vector $\overrightarrow{Q P}$ on to $\overrightarrow{Q Q^{\prime}}$. The required distance is equal to $\left\|\frac{(Q-P) \cdot \mathbf{n}}{\mathbf{n} \cdot \mathbf{n}} \mathbf{n}\right\|=\frac{|Q \cdot \mathbf{n}-P \cdot \mathbf{n}|}{\|\mathbf{n}\|}$.
8. Observe that the points P_{0}, X_{0} and Y_{0} lie on the plane. If X is any point on the plane then $X-P_{0}=s\left(X_{0}-P_{0}\right)+t\left(Y_{0}-P_{0}\right)$ for some $s, t \in \mathbb{R}$.
9. Observe that the planes intersect in a line if and only if their normal vectors lie on a plane.
10. The distance from P to the x-axis is $\sqrt{y^{2}+z^{2}}$ and distance from P to the $y z$-plane is $|x|$. An equation of the surface is $y^{2}+z^{2}=4 x^{2}$.
11. Let $P=\left(x_{0}, y_{0}, z_{0}\right)$ be any point on the surface and $Q=(-1,0,0)$. Since the distance between P and Q is equal to the distance from P to the plane $x=1$, we have $\left(x_{0}+1\right)^{2}+$ $y_{0}^{2}+z_{0}^{2}=\left(x_{0}-1\right)^{2}$. Therefore an equation of the surface is $y^{2}+z^{2}=-4 x$.
12. The line passing through a point on the curve $\left(x_{0}, y_{0}, 0\right)$ and parallel to the vector $(1,1,1)$ lie on the cylinder. The equation of the line is $\frac{x-x_{0}}{1}=\frac{y-y_{0}}{1}=\frac{z}{1}$. Therefore $x_{0}=x-z$ and $y_{0}=y-z$. Since $\left(x_{0}, y_{0}, 0\right)$ satisfies the equation $(x-2)^{2}+y^{2}=4$, an equation for the surface is $(x-z-2)^{2}+(y-z)^{2}=4$.
13. Let $P=(x, y, z)$ be a point on the surface. Consider the point $Q=\left(x_{0}, y, 0\right)$ on the curve. Note that the distance from Q to the y-axis and the distance from P to the y-axis are same. Therefore we get $x_{0}^{2}=x^{2}+z^{2}$. An equation of the surface is $4\left(x^{2}+z^{2}\right)+9 y^{2}=36$.
14. See Figure 1-5 for (a)-(e).
15. See Figure 6.
