1. Match the parametric equation with the curve it defines. The curves are given in Figures 1-11.
(a) $R(t)=\left(t^{2}, t^{3}\right), t \in \mathbb{R}$ (Cuspidal cubic).
(b) $R(t)=\left(e^{t} \cos t, e^{t} \sin t\right), t \geq 0$ (Logarithmic spiral)
(c) $R(t)=(t \cos t, t \sin t), t \geq 0($ Spiral $)$
(d) $R(t)=\left(t^{2}-1, t\left(t^{2}-1\right)\right), t \in \mathbb{R}$ (Crunodal cubic)
(e) $R(t)=\left(t^{2}+t, 2 t-1\right), t \in \mathbb{R}$ (Parabola)
(f) $R(t)=\left(\cos ^{3} t, \sin ^{3} t\right), 0 \leq t \leq 2 \pi$ (Astroid)
(g) $R(t)=\left(\sin ^{2} t, 2 \cos t\right), t \in \mathbb{R}$
(h) $R(t)=\left(\cos t^{2}, \sin t^{2}, t^{2}\right), t \in \mathbb{R}$
(i) $R(t)=(\cos t, \sin t, \sin t), t \in \mathbb{R}$
(j) $R(t)=(t \cos t, t \sin t, t), t \geq 0$
(k) $R(t)=(1+\sin t, 1+\sin t, 2+\sin t), t \in \mathbb{R}$
2. Find parametric representations of the following circles.
(a) The circle of radius 4 centered at $(1,0,2)$ and parallel to the $y z$-plane.
(b) The circle of radius 3 centered at $(0,0,0)$ and lying on the plane containing two unit vectors \mathbf{u} and \mathbf{v} where $\mathbf{u} \cdot \mathbf{v}=0$.
(c) The circle of radius 3 centered at $(1,1,2)$ and parallel to the plane containing two unit vectors \mathbf{u} and \mathbf{v} where $\mathbf{u} \cdot \mathbf{v}=0$.
(d) The intersection of the sphere $x^{2}+y^{2}+z^{2}=4$ and the plane $z=y$.
(e) The circle passing through $e_{1}=(1,0,0), e_{2}=(0,1,0)$ and $e_{3}=(0,0,1)$.
3. Parameterize the curve given by $x^{3}+y^{3}=3 x y$ by considering the parameter $t=\frac{y}{x}$ which is the slope of the line through the origin and the point (x, y) on the curve.
4. Consider the unit circle $x^{2}+y^{2}=1$. By considering the parameter $t=\frac{y}{x-1}$ which is the slope of the line joining $(1,0)$ and the point (x, y) on the curve, show that $R(t)=$ $\left(\frac{t^{2}-1}{t^{2}+1}, \frac{2 t}{t^{2}+1}\right)$ is a parametric representation of the unit circle. (This parametrization of the circle is called rational parametrization).
5. Consider a parametric representation of the line $R(t)=\left(x_{0}+t u, y_{0}+t v\right), t \in \mathbb{R},(u, v) \neq$ $(0,0)$. Show that $v x-u y-v x_{0}+u y_{0}=0$ is an implicit equation of the line.
6. Reparameterize the following curves in terms of arc length.
(a) $R(t)=(2+t, 3-t, 5 t), t \geq 0$.
(b) $R(t)=(2 \cos t, 2 \sin t, \sqrt{5} t), t \geq 0$.
7. Find two parametric representations $R_{1}(t)$ and $R_{2}(t)$ for the line $y=x$ in \mathbb{R}^{2} such that $R_{1}(0)=R_{2}(0)=(0,0)$ and $R_{1}^{\prime}(0) \neq(0,0)$ but $R_{2}^{\prime}(0)=(0,0)$.
8. Consider a curve $R(t), t \in I$ and let $R^{\prime}(t) \neq 0$ for all t. Show that the arc length parametrization $R(t(s))$ of the curve $R(t)$ has unit speed, i.e, $\left\|\frac{d R}{d s}\right\|=1$.
9. The curve is sketched/identified by plotting the points $R\left(t_{i}\right)$ for some $t_{1}, t_{2}, \ldots, t_{n}$.
(a) Note that the curve is symmetric about the x axis i.e. if $(x(t), y(t))$ lies on the curve then $(x(t),-y(t))=(x(-t), y(-t))$ also lies on the curve. Moreover $x(t)=t^{2}>0$ for all t. The curve is given in Figure 4.
(b) Note that $R(t)=(r(t) \cos t, r(t) \sin t), t \geq 0$ where $r(t)=e^{t}$. So $R(t)$ is a parametric form of the polar curve $r(t)=e^{t}$. The curve is given in Figure 6.
(c) The curve is given in Figure 5. It is a polar curve $r(t)=t, t \geq 0$.
(d) For $t=1$ and $t=-1, R(t)=(0,0)$. The curve is symmetric about the x-axis. The curve is given in Figure 1.
(e) Since $t=\frac{y+1}{2}$, we get $x=\frac{y^{2}}{4}+y+\frac{3}{4}$ (by eliminating t). The curve is given in Figure 3.
(f) The curve is given in Figure 2.
(g) Note that $4 x+y^{2}=4,0 \leq x \leq 1$ and $-2 \leq y \leq 2$. So the curve is a portion of a parabola which is given in Figure 7.
(h) Observe that the x and y components trace out a circle in the $x y$-plane. The curve is given in Figure 9.
(i) The x and y components trace out a circle and the curve lies on the plane $z=y$. The curve is given in Figure 8.
(j) A point (x, y, z) on the curve satisfies the equation $x^{2}+y^{2}=z^{2}$. The curve is given in Figure 11.
(k) If we substitute $t^{\prime}=\sin t$, the points in the curve are represented by $\left(1+t^{\prime}, 1+t^{\prime}, 2+t^{\prime}\right)$ which lies on a straight line. Since $\sin t$ is bounded the given curve is a line segment which is given in Figure 10.
10. (a) The given circle is a translation of the circle $r(t)=(0,4 \cos t, 4 \sin t)$. A parametrization of the given circle is $R(t)=(1,0,2)+(0,4 \cos t, 4 \sin t), 0 \leq t \leq 2 \pi$.
(b) Observe that any point \mathbf{p} on the plane containing \mathbf{u}, \mathbf{v} and $(0,0,0)$ can be expressed as $\mathbf{p}=(\mathbf{p} \cdot \mathbf{u}) \mathbf{u}+(\mathbf{p} \cdot \mathbf{v}) \mathbf{v}$ (see PP 23). Let (x, y, z) be a point on the circle and t be the angle between the vectors (x, y, z) and \mathbf{u}. Then $(x, y, z)=4(\cos t) \mathbf{u}+4(\sin t) \mathbf{v}$. Therefore a parametric representation of the given circle is $R(t)=4(\cos t) \mathbf{u}+4(\sin t) \mathbf{v}$.
(c) By (b), a parametrization of the given circle is $R(t)=(1,1,2)+4(\cos t) \mathbf{u}+4(\sin t) \mathbf{v}$.
(d) Observe that the intersection is a circle lying in the plane $z=y$ centered at $(0,0,0)$ with radius 2 . Let $\mathbf{u}=(1,0,0)$ and $\mathbf{v}=\frac{1}{\sqrt{2}}(0,1,1)$. Then \mathbf{u} and \mathbf{v} are perpendicular unit vectors lying on the plane $z=y$. Following the solution of (b), we observe that a parametric representation of the given circle is $R(t)=(2 \cos t)(1,0,0)+$ $(2 \sin t) \frac{1}{\sqrt{2}}(0,1,1)=2\left(\cos t, \frac{\sin t}{\sqrt{2}}, \frac{\sin t}{\sqrt{2}}\right)$.
(e) The center of the circle is the center of the equilateral triangle formed by e_{1}, e_{2} and e_{3} which is $\mathbf{u}=\frac{1}{3}(1,1,1)$. This can be easily checked because $\left\|u-e_{1}\right\|=\left\|u-e_{2}\right\|=$ $\left\|u-e_{3}\right\|=\frac{\sqrt{6}}{3}$ and the point $\frac{1}{3}(1,1,1)$ lies on the triangular region. The unit vector in the direction from the center \mathbf{u} towards the direction of a point on the circle e_{3} is $\mathbf{w}=\frac{1}{\sqrt{6}}(1,1,-2)$. If \mathbf{v} is a unit vector which is perpendicular to \mathbf{w} and $(1,1,1)$ which is a normal to the plane containing e_{1}, e_{2}, e_{3}, then $\mathbf{v}=\frac{1}{\sqrt{2}}(1,-1,0)$. Following the solution of (c), we observe that a parametric representation of the given circle is $R(t)=\frac{1}{3}(1,1,1)+\frac{\sqrt{6}}{3}(\cos t) \mathbf{w}+\frac{\sqrt{6}}{3}(\sin t) \mathbf{v}$.
11. Substitute $y=t x$ into the equation and get $x=\frac{3 t}{1+t^{3}}$, by ignoring the trivial solution $x=0$. Since $y=t x$ we get $y=\frac{3 t^{2}}{1+t^{3}}$. Therefore a parametrization for the curve is $R(t)=\left(\frac{3 t}{1+t^{3}}, \frac{3 t^{2}}{1+t^{3}}\right)$.
12. Substitute $y=t(x-1)$ into the equation and get $x=\frac{t^{2}-1}{t^{2}+1}$, by ignoring the trivial solution $x=1$.
13. Let (x, y) be any point on the line. Then $\left(x-x_{0}, y-y_{0}\right) \times(u, v)=0$.
14. (a) By definition $s(t)=\int_{0}^{t} \sqrt{\left(x^{\prime}(\tau)\right)^{2}+\left(y^{\prime}(\tau)\right)^{2}+\left(z^{\prime}(\tau)\right)^{2}} d \tau=\int_{0}^{t} \sqrt{27} d \tau=\sqrt{27} t$. This implies that $R(t(s))=\left(2+\frac{1}{\sqrt{27}} s, 3-\frac{1}{\sqrt{27}} s, \frac{5}{\sqrt{27}} s\right)$.
(b) By definition $s(t)=3 t$. Therefore $t(s)=\frac{s}{3}$ and hence $R(t(s))=\left(2 \cos \frac{s}{3}, 2 \sin \frac{s}{3}, \sqrt{5} \frac{s}{3}\right)$.
15. Consider $R_{1}(t)=(t, t)$ and $R_{2}(t)=\left(t^{3}, t^{3}\right), t \in \mathbb{R}$.
16. Since the parametrization is in terms of $s,\left\|\frac{d R}{d s}\right\|$ is the speed of $R(t(s))$. We know that $\frac{d R}{d s}=T$ and therefore $\left\|\frac{d R}{d s}\right\|=1$.
