PP 25 : Calculus of Vector Valued Functions II : Tangent, normal and curvature

1. Consider the curve $R(t)=\left(t^{2}-1, t\left(t^{2}-1\right)\right), t \in \mathbb{R}$. Show that $R(-1)=R(1)$ and find the tangent lines for the curves at $R(1)$ and $R(-1)$.
2. Let $R(t)=\left(t^{2}-2 t, t^{2}+2 t\right)$. Find the points on the curve where the curve has either vertical or horizontal tangent.
3. Consider the curve $R_{1}(t)=\left(t, 1-t, 3+t^{2}\right)$ and $R_{2}(t)=\left(3-t, t-2, t^{2}\right)$
(a) Find the points of intersections of the curves.
(b) Find the angle between the curves at the points of intersection.
4. Suppose that a particle moves along the curve $R(t)=\left(e^{t}, e^{2 t}, \sin t\right)$ from $t=0$ to $t=1$ and then it moves on the tangent line to the curve at $R(1)$ in the direction of the tangent vector. Find the position of the particle at $t=5$.
5. Consider the curves $R_{1}(\theta)=\left(\left(\frac{3}{2}+\cos \theta\right) \cos \theta,\left(\frac{3}{2}+\cos \theta\right) \sin \theta\right)$ and $R_{2}(\theta)=((3+\cos \theta) \cos \theta,(3+\cos \theta) \sin \theta), 0 \leq \theta \leq 2 \pi$.
(a) Represent the curves in polar forms.
(b) Show that there exist two distinct elements $\theta_{1}, \theta_{2} \in\left[\frac{\pi}{2}, \pi\right]$ such that the curve has vertical tangents at $R_{1}\left(\theta_{1}\right)$ and $R_{1}\left(\theta_{2}\right)$.
(c) Show that there exists a unique $\theta \in\left[\frac{\pi}{2}, \pi\right]$ such that the curve has a vertical tangent at $R_{2}(\theta)$.
(d) Sketch the curves.
6. Let T denote the unit tangent vector of the curve given by $R(t)$. Denote $R^{\prime}(t), R^{\prime \prime}(t), T(t)$ and $T^{\prime}(t)$ simply by $R^{\prime}, R^{\prime \prime}, T$ and T^{\prime}. Show that (under the assumptions that $R^{\prime \prime}$ and T exist).
(a) $R^{\prime \prime}(t)=T^{\prime} \frac{d s}{d t}+T \frac{d^{2} s}{d t^{2}}$
(b) $R^{\prime \prime} \times R^{\prime}=\left(\frac{d s}{d t}\right)^{2} T^{\prime} \times T$
(c) $\left\|T^{\prime}\right\|=\frac{\left\|R^{\prime \prime} \times R^{\prime}\right\|}{\left\|R^{\prime}\right\|^{2}}$
(d) the curvature $\kappa=\frac{\left\|R^{\prime \prime} \times R^{\prime}\right\|}{\left\|R^{\prime}\right\|^{3}}$.
7. For the following curves, find the unit tangent vector, principal normal and curvature.
(a) $R(t)=(\sqrt{2} \cos t, \sin t, \sin t), t \in \mathbb{R}$
(b) $R(t)=(\cos 2 t, 2 t, \sin 2 t), t \in \mathbb{R}$
(c) $R(t)=\left(t^{2}, \sin t-t \cos t, \cos t+t \sin t\right), t>0$.
8. For each of the following curves, find a point on the curve at which the curvature is maximum.
(a) $y=\ln x, x>0$
(b) $y=e^{x}, x \in \mathbb{R}$.
(c) $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ where $0<b<a$.
9. Let $\mathrm{R}(\mathrm{s})$ be an arc length parameter of a curve. Show that the curvature of the curve at a point $R(s)$ is given by $\left\|R^{\prime \prime}(s)\right\|$.
10. It is clear that $R(-1)=R(1)=(0,0)$. Since $R^{\prime}(t)=\left(2 t, 3 t^{2}-1\right), R^{\prime}(1)=(2,2)$ and $R^{\prime}(-1)=(-2,2)$ and hence $y=x$ and $y=-x$ are the tangent lines at $R(1)$ and $R(-1)$ respectively.
11. Since $\frac{d x}{d t} \neq 0$ and $\frac{d y}{d t}=0$ at $t=-1$, the curve has a horizontal tangent at $R(-1)=(3,-1)$. Similarly, the curve has a vertical tangent at $R(1)=(-1,3)$.
12. Consider the second curve as $R_{2}(u)$ with parameter u. If $R_{1}(t)=R_{2}(u)$, then $t=3-u, 1-$ $t=u-2$ and $3+t^{2}=u^{2}$. This implies that the curves meet at $R_{1}(1)=R_{2}(2)=(1,0,4)$. If θ is the angle between the tangent vector then $\cos \theta=\frac{R_{1}^{\prime}(1) \cdot R_{2}^{\prime}(2)}{\left\|R_{1}^{\prime}(1)\right\|\left\|R_{2}^{\prime}(2)\right\|}=\frac{1}{\sqrt{3}}$.
13. The tangent line at $R(1)$ is defined by $X(t)=\left(e, e^{2}, \sin 1\right)+t\left(e, 2 e^{2}, \cos 1\right)$. Note that $X(0)=R(1)$. The position vector of the particle at $t=5$ is $X(4)$.
14. (a) The polar forms of the curves R_{1} and R_{2} are $r_{1}(\theta)=\frac{3}{2}+\cos \theta$ and $r_{2}(\theta)=3+\cos \theta$.
(b) If we consider $R_{1}(\theta)=\left(x_{1}(\theta), y_{1}(\theta)\right)$ then in $[0, \pi], \frac{d x_{1}}{d \theta}=0$ at $\theta=\pi$ and $\theta=$ $\cos ^{-1}\left(\frac{-3}{4}\right)$. Moreover $\frac{d y_{1}}{d \theta} \neq 0$ at these points.
(c) If we consider $R_{2}(\theta)=\left(x_{2}(\theta), y_{2}(\theta)\right)$ then in $[0, \pi], \frac{d x_{2}}{d \theta}=0$ only at $\theta=\pi$.
(d) The curves are given in Practice Problems 19.
15. (a) This follows from the fact that $R^{\prime}(t)=\frac{d R}{d s} \frac{d s}{d t}=T \frac{d s}{d t}$.
(b) Use (a) and $T \times T=0$.
(c) Since T and T^{\prime} are orthogonal, $\left\|T^{\prime} \times T\right\|=\left\|T^{\prime}\right\|\|T\|=\left\|T^{\prime}\right\|$. Now use (b).
(d) This follows from the definition of the curvature $\kappa=\frac{\left\|T^{\prime}\right\|}{\left\|R^{\prime}\right\|}$.
16. (a) $T(t)=\frac{R^{\prime}(t)}{\left\|R^{\prime}(t)\right\|}=\frac{1}{\sqrt{2}}(-\sqrt{2} \sin t, \cos t, \cos t), N(t)=\frac{T^{\prime}(t)}{\left\|T^{\prime}(t)\right\|}=\frac{1}{1}\left(-\cos t,-\frac{2}{\sqrt{2}} \sin t,-\frac{2}{\sqrt{2}} \sin t\right)$ and $\kappa(t)=\frac{\left\|T^{\prime}(t)\right\|}{\left\|R^{\prime}(t)\right\|}=\frac{1}{\sqrt{2}}$.
(b) $T(t)=\left(-\frac{\sin 2 t}{\sqrt{2}}, \frac{1}{\sqrt{2}}, \frac{\cos 2 t}{\sqrt{2}}\right), N(t)=(-\cos 2 t, 0,-\sin 2 t)$ and $\kappa(t)=\frac{1}{2}$.
(c) $T(t)=\frac{1}{\sqrt{5}}(2, \sin t, \cos t), N(t)=(0, \cos t,-\sin t)$ and $\kappa(t)=\frac{1}{5 t}$
17. (a) Note that $\kappa(x)=\frac{\left|f^{\prime \prime}(x)\right|}{\left[1+\left(f^{\prime}(x)\right)^{2}\right]^{\frac{3}{2}}}=\frac{x}{\left(1+x^{2}\right)^{\frac{3}{2}}}$ and $\kappa^{\prime}(x)=\frac{1-2 x^{2}}{\left(1+x^{2}\right)^{\frac{5}{2}}}$. Verify that the curvature is maximum at $\left(\frac{1}{\sqrt{2}}, \ln \frac{1}{\sqrt{2}}\right)$.
(b) Observe that $\kappa(x)=\frac{e^{x}}{\left(1+e^{2 x}\right)^{\frac{3}{2}}}$ and $\kappa^{\prime}(x)=\frac{e^{x}\left(1+e^{2 x}\right)^{\frac{1}{2}}\left(1-2 e^{2 x}\right)}{\left(1+e^{2 x}\right)^{3}}$. Verify that the curvature is maximum at $\left(\frac{1}{2} \ln \frac{1}{2}, \frac{1}{\sqrt{2}}\right)$.
(c) Consider the ellipse as a parametric curve $R(t)=(a \cos t, b \sin t), 0 \leq t \leq 2 \pi$. Using the formula for $\kappa(t)=\frac{\left\|R^{\prime \prime}(t) \times R^{\prime}(t)\right\|}{\left\|R^{\prime}(t)\right\|}$, obtain, $\kappa(t)=\frac{a b}{\left(\sqrt{a^{2} \sin ^{2} t+b^{2} \cos ^{2} t}\right)}$. Observe that $a^{2} \sin ^{2} t+b^{2} \cos ^{2} t \geq b^{2}$ for all $t \in[0,2 \pi]$ and at $t=0$ (resp., $t=\pi$), $a^{2} \sin ^{2} t+$ $b^{2} \cos ^{2} t=b^{2}$. Therefore the maximum of $\kappa(t)$ is achieved at $t=0$ and hence the curvature is maximum at $(a, 0)$ (resp., $(-a, 0)$).
18. Follows from the definition of $\kappa, \kappa=\left\|\frac{d T}{d s}\right\|=\left\|\frac{d}{d s}\left(\frac{d R}{d s}\right)\right\|$.
