- 1. Find the limit of the sequence $((\sin \frac{1}{n}, e^{-\frac{1}{n^2}}, \sin(\frac{\pi}{2} \frac{1}{n})).$
- 2. Find
 - (a) $\lim_{(x,y)\to(0,0)} \frac{3x^2|y|}{x^2+y^2}$.
 - (b) $\lim_{(x,y,z)\to(0,0,0)} \frac{1-\cos(x+y+z)}{(x+y+z)^2}$.
 - (c) $\lim_{(x,y)\to(0,0)} \frac{\sin(x^2+y^2)}{x^2+y^2}$.
- 3. Show that the following limits do not exist.
 - (a) $\lim_{(x,y,z)\to(0,0,0)} \frac{(x+y+z)^2}{x^2+y^2+z^2}$
 - (b) $\lim_{(x,y)\to(0,0)} \frac{xy\cos y}{4x^2+y^2}$.
- 4. Show that the function $f: \mathbb{R}^2 \to \mathbb{R}$ defined by $f(x,y) = \frac{\sin(xy)}{xy}$ for $xy \neq 0$ and 1 for xy = 0 is continuous on \mathbb{R}^2 .
- 5. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by $f(x,y) = \frac{x^3y}{2x^4+y^2}$ for $(x,y) \neq 0$ and 0 for (x,y) = (0,0). Show that the function f is continuous at (0,0).
- 6. Let $f(x,y) = e^{-\frac{1}{|x-y|}}$ when $x \neq y$. How must f be defined for x = y so that f is continuous on \mathbb{R}^2 ?
- 7. Find a function $f: \mathbb{R}^2 \to \mathbb{R}$ such that f(0,0) = 1, f(1,0) = 0 and $0 \le f(x,y) \le 1$ for all $(x,y) \in \mathbb{R}^2$.
- 8. Let $f: \mathbb{R}^3 \to \mathbb{R}$ be continuous and $X_0 \in \mathbb{R}^3$. If $f(X_0) > 0$ show that there exists an ϵ -neighborhood $B_{\epsilon}(X_0) = \{X \in \mathbb{R}^3 : \|X X_0\| < \epsilon\}$ of X_0 such that f(X) > 0 for all $X \in B_{\epsilon}(X_0)$.
- 9. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be given by f(x,y) = 1 if x = 0 or y = 0 and f(x,y) = 0 otherwise. Show that $f_x(0,0) = f_y(0,0) = 0$ but f is not continuous at (0,0).
- 10. Let $f, g : \mathbb{R}^2 \to \mathbb{R}$ be defined by f(x, y) = |x| + |y| and g(x, y) = |xy| for $(x, y) \in \mathbb{R}^2$. Show that
 - (a) $f_x(0,0)$ and $f_y(0,0)$ do not exist whereas $g_x(0,0)$ and $g_y(0,0)$ exist.
 - (b) for $x_0 \neq 0$, $g_u(x_0, 0)$ does not exist and for $y_0 \neq 0$, $g_x(0, y_0)$ does not exist.
- 11. Consider the function $f(x,y) = \frac{3x^2y y^3}{x^2 + y^2}$ for $(x,y) \neq (0,0)$ and f(0,0) = 0.
 - (a) Verify whether f is continuous at (0,0).
 - (b) Evaluate $f_y(x,0)$ for $x \neq 0$.
 - (c) Verify whether f_y is continuous at (0,0).
- 12. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be such that f(X+Y) = f(X) + f(Y) and $f(\alpha X) = \alpha f(X)$ for all $X, Y \in \mathbb{R}^2$ and $\alpha \in \mathbb{R}$. Show that f is continuous on \mathbb{R}^2 .
- 13. (*) Let A be a bounded subset of \mathbb{R}^2 . Suppose $(x_0, y_0) \in A$ whenever a sequence $((x_n, y_n))$ in A converges to (x_0, y_0) . Let $f : A \to \mathbb{R}$ be continuous. Show that

- (a) f is bounded.
- (b) there exists $X_0, Y_0 \in A$ such that $f(X_0) = \sup\{f(X) : X \in A\}$ and $f(Y_0) = \inf\{f(X) : X \in A\}$.
- 14. (*) Let $f: \mathbb{R}^2 \to \mathbb{R}$ be continuous. Let $S = \{X \in \mathbb{R}^2 : ||X|| \le 1\}$. Show that the range of $f, f(S) = \{f(X) : X \in S\}$, is an interval.

Practice Problems 26: Hints/Solutions

- 1. $\left(\sin\frac{1}{n}, e^{-\frac{1}{n^2}}, \sin(\frac{\pi}{2} \frac{1}{n})\right) \to (0, 0, 1) \text{ an } n \to \infty.$
- 2. (a) Since $\lim_{(x,0)\to(0,0)} \frac{3x^2|y|}{x^2+y^2} = 0$, 0 is the possible limit. Now $\left|\frac{3x^2|y|}{x^2+y^2} 0\right| \le \frac{3(x^2+y^2)|y|}{x^2+y^2} = |y| \to 0$ as $(x,y) \to (0,0)$. Therefore 0 is the limit.
 - (b) As $(x, y, z) \to (0, 0, 0, 0)$, $t = x + y + z \to 0$. Therefore $\lim_{(x, y, z) \to (0, 0, 0)} \frac{1 \cos(x + y + z)}{(x + y + z)^2} = \lim_{t \to 0} \frac{1 \cos t}{t} = \frac{1}{2}$.
 - (c) $\lim_{(x,y)\to(0,0)} \frac{\sin(x^2+y^2)}{x^2+y^2} = 1$.
- 3. (a) Along x=y=0, $\lim_{(x,y,z)\to(0,0,0)}\frac{(x+y+z)^2}{x^2+y^2+z^2}=1$ whereas, along x=y=z, $\lim_{(x,y,z)\to(0,0,0)}\frac{(x+y+z)^2}{x^2+y^2+z^2}=3$. Therefore the limit does not exist.
 - (b) For x = 0, $\lim_{(x,y)\to(0,0)} \frac{xy\cos y}{4x^2+y^2} = 0$ and for x = y, $\lim_{(x,y)\to(0,0)} \frac{xy\cos y}{4x^2+y^2} = \frac{1}{5}$. Therefore the limit does not exist.
- 4. Let $(x_0, y_0) \in \mathbb{R}^2$ and $x_0 y_0 \neq 0$. The function f is continuous at (x_0, y_0) as $f(x_n, y_n) \rightarrow f(x_0, y_0)$ when $(x_n, y_n) \rightarrow (x_0, y_0)$. Suppose $(x_0, y_0) \in \mathbb{R}^2$ such that $x_0 y_0 = 0$ and $(x_n, y_n) \rightarrow (x_0, y_0)$. Since $x_n y_n \rightarrow 0$, $f(x_n, y_n) \rightarrow 1 = f(x_0, y_0)$. Therefore f is continuous at (x_0, y_0) .
- 5. By AM-GM inequality, $|f(x,y) f(0,0)| \le \left| \frac{x^3y}{x^4 + y^2} \right| \le \frac{2x(x^4 + y^2)}{x^4 + y^2} \to 0$ as $(x,y) \to (0,0)$.
- 6. Setting f(x,y) = 0 for x = y makes the function continuous.
- 7. Consider $f(x,y) = \frac{|x+y-1|}{|x+y|+1}$
- 8. Suppose that there exists no such ϵ -neighborhood. Then for every n, there exists $X_n \in B_{\frac{1}{n}}(X_0) = \{X \in \mathbb{R}^3 : \|X X_0\| \le \frac{1}{n}\}$ such that $f(X_n) \le 0$. Since $X_n \to X_0$, by the continuity of $f, f(X_n) \to f(X_0)$. Therefore $f(X_0) \le 0$ which is a contradiction.
- 9. Easily follows from the definitions.
- 10. For $t \neq 0$, $\frac{f(0+t,0)-f(0,0)}{t} = \frac{|t|}{t}$ and $\frac{f(0,0+t)-f(0,0)}{t} = \frac{|t|}{t}$. Therefore $f_x(0,0)$ and $f_y(0,0)$ do not exist. For $(x_0,y_0) \in \mathbb{R}^2$ and $t \neq 0$, $\frac{g(x_0+t,y_0)-g(x_0,y_0)}{t} = \frac{|y_0|(|x_0+t|-|x_0|)}{t}$. By allowing $t \to 0$, we see that $f_x(0,0) = 0$, $f_y(0,0) = 0$ and $f_x(0,y_0)$ does not exist if $y_0 \neq 0$.
- 11. (a) Since $|f(x,y) f(0,0)| \le \frac{|y||3x^2 y^2|}{x^2 + y^2} \le \frac{|y||3x^2 + 3y^2|}{x^2 + y^2} \le 3|y| \to 0$ as $(x,y) \to (0,0)$, f is continuous at (0,0).
 - (b) $f_y(0,0) = \lim_{t \to 0} \frac{f(0,t)}{t} = -1.$
 - (c) Since $f_y(x,0) = \lim_{t\to 0} \frac{f(x,t) f(x,0)}{t} = 3$ for any $x \neq 0$, $f_y(x,0) \nrightarrow f_y(0,0)$ as $x \to 0$. Therefore f_y is not continuous at (x_0,y_1) .

- 12. Let $(x_0, y_0) \in \mathbb{R}^2$ and $(x_n, y_n) \to (x_0, y_0)$. Then $f((x_n, y_n)) = f(x_n(1, 0) + y_n(0, 1)) = x_n f(1, 0) + y_n f(0, 1) \to x_0 f((1, 0)) + y_0 f((0, 1)) = f((x_0, y_0))$.
- 13. (a) If f is not bounded then for every n, there exists $(x_n, y_n) \in A$ such that $f((x_n, y_n)) > n$. Since $((x_n, y_n))$ is a bounded sequence, there exists a subsequence $((x_{n_k}, y_{n_k}))$ such that $(x_{n_k}, y_{n_k}) \to (x_0, y_0) \in A$. By the continuity of f, $f((x_{n_k}, y_{n_k})) \to f(x_0, y_0)$ which contradicts the assumption that $f(x_n, y_n) > n$ for every n.
 - (b) For every n, find $(x_n, y_n) \in A$ such that $\sup\{f(X) : X \in A\} \frac{1}{n} \le f(x_n, y_n)$. Since $((x_n, y_n))$ is bounded, by Bolzano-Weierstrass theorem, there exists a subsequence (x_{n_k}, y_{n_k}) converges, say to $X_0 = (x_0, y_0)$. By the continuity of f, $f(x_n, y_n) \to f(x_0, y_0) \ge \sup\{f(X) : X \in A\}$, that is $f(X_0) = \sup\{f(X) : X \in A\}$.
- 14. Let $X_0, Y_0 \in S$ be such that $f(X_0) = M = \sup\{f(X) : X \in S\}$ and $f(Y_0) = m = \inf\{f(X) : X \in S\}$ (see Problem 13). Note that $f(X) \in [m, M]$ for every $X \in S$. Suppose $\alpha \in (m, M)$. Consider the map $g(t) = f((1-t)Y_0 + tX_0)$. Observe that $g: [0, 1] \to \mathbb{R}$ is continuous, g(0) = m and g(1) = M. By the intermediate value property, there exists $t_0 \in (0, 1)$ such that $g(t_0) = \alpha$, that is $f((1-t_0)Y_0 + t_0X_0) = \alpha$. Hence f(S) = [m, M].