PP 26 : Functions of several variables: Sequences, continuity and partial derivatives

1. Find the limit of the sequence $\left(\left(\sin \frac{1}{n}, e^{-\frac{1}{n^{2}}}, \sin \left(\frac{\pi}{2}-\frac{1}{n}\right)\right)\right.$.
2. Find
(a) $\lim _{(x, y) \rightarrow(0,0)} \frac{3 x^{2}|y|}{x^{2}+y^{2}}$.
(b) $\lim _{(x, y, z) \rightarrow(0,0,0)} \frac{1-\cos (x+y+z)}{(x+y+z)^{2}}$.
(c) $\lim _{(x, y) \rightarrow(0,0)} \frac{\sin \left(x^{2}+y^{2}\right)}{x^{2}+y^{2}}$.
3. Show that the following limits do not exist.
(a) $\lim _{(x, y, z) \rightarrow(0,0,0)} \frac{(x+y+z)^{2}}{x^{2}+y^{2}+z^{2}}$
(b) $\lim _{(x, y) \rightarrow(0,0)} \frac{x y \cos y}{4 x^{2}+y^{2}}$.
4. Show that the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined by $f(x, y)=\frac{\sin (x y)}{x y}$ for $x y \neq 0$ and 1 for $x y=0$ is continuous on \mathbb{R}^{2}.
5. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by $f(x, y)=\frac{x^{3} y}{2 x^{4}+y^{2}}$ for $(x, y) \neq 0$ and 0 for $(x, y)=(0,0)$. Show that the function f is continuous at $(0,0)$.
6. Let $f(x, y)=e^{-\frac{1}{|x-y|}}$ when $x \neq y$. How must f be defined for $x=y$ so that f is continuous on \mathbb{R}^{2} ?
7. Find a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ such that $f(0,0)=1, f(1,0)=0$ and $0 \leq f(x, y) \leq 1$ for all $(x, y) \in \mathbb{R}^{2}$.
8. Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be continuous and $X_{0} \in \mathbb{R}^{3}$. If $f\left(X_{0}\right)>0$ show that there exists an ϵ-neighborhood $B_{\epsilon}\left(X_{0}\right)=\left\{X \in \mathbb{R}^{3}:\left\|X-X_{0}\right\|<\epsilon\right\}$ of X_{0} such that $f(X)>0$ for all $X \in B_{\epsilon}\left(X_{0}\right)$.
9. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be given by $f(x, y)=1$ if $x=0$ or $y=0$ and $f(x, y)=0$ otherwise. Show that $f_{x}(0,0)=f_{y}(0,0)=0$ but f is not continuous at $(0,0)$.
10. Let $f, g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by $f(x, y)=|x|+|y|$ and $g(x, y)=|x y|$ for $(x, y) \in \mathbb{R}^{2}$. Show that
(a) $f_{x}(0,0)$ and $f_{y}(0,0)$ do not exist whereas $g_{x}(0,0)$ and $g_{y}(0,0)$ exist.
(b) for $x_{0} \neq 0, g_{y}\left(x_{0}, 0\right)$ does not exist and for $y_{0} \neq 0, g_{x}\left(0, y_{0}\right)$ does not exist.
11. Consider the function $f(x, y)=\frac{3 x^{2} y-y^{3}}{x^{2}+y^{2}}$ for $(x, y) \neq(0,0)$ and $f(0,0)=0$.
(a) Verify whether f is continuous at $(0,0)$.
(b) Evaluate $f_{y}(x, 0)$ for $x \neq 0$.
(c) Verify whether f_{y} is continuous at $(0,0)$.
12. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be such that $f(X+Y)=f(X)+f(Y)$ and $f(\alpha X)=\alpha f(X)$ for all $X, Y \in \mathbb{R}^{2}$ and $\alpha \in \mathbb{R}$. Show that f is continuous on \mathbb{R}^{2}.
13. $\left.{ }^{*}\right)$ Let A be a bounded subset of \mathbb{R}^{2}. Suppose $\left(x_{0}, y_{0}\right) \in A$ whenever a sequence $\left(\left(x_{n}, y_{n}\right)\right)$ in A converges to $\left(x_{0}, y_{0}\right)$. Let $f: A \rightarrow \mathbb{R}$ be continuous. Show that
(a) f is bounded.
(b) there exists $X_{0}, Y_{0} \in A$ such that $f\left(X_{0}\right)=\sup \{f(X): X \in A\}$ and $f\left(Y_{0}\right)=$ $\inf \{f(X): X \in A\}$.
14. (*) Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be continuous. Let $S=\left\{X \in \mathbb{R}^{2}:\|X\| \leq 1\right\}$. Show that the range of $f, f(S)=\{f(X): X \in S\}$, is an interval.

Practice Problems 26 : Hints/Solutions

1. $\left(\sin \frac{1}{n}, e^{-\frac{1}{n^{2}}}, \sin \left(\frac{\pi}{2}-\frac{1}{n}\right)\right) \rightarrow(0,0,1)$ an $n \rightarrow \infty$.
2. (a) Since $\lim _{(x, 0) \rightarrow(0,0)} \frac{3 x^{2}|y|}{x^{2}+y^{2}}=0,0$ is the possible limit. Now $\left|\frac{3 x^{2}|y|}{x^{2}+y^{2}}-0\right| \leq \frac{3\left(x^{2}+y^{2}\right)|y|}{x^{2}+y^{2}}=$ $|y| \rightarrow 0$ as $(x, y) \rightarrow(0,0)$. Therefore 0 is the limit.
(b) As $(x, y, z) \rightarrow(0,0,0),, t=x+y+z \rightarrow 0$. Therefore $\lim _{(x, y, z) \rightarrow(0,0,0)} \frac{1-\cos (x+y+z)}{(x+y+z)^{2}}=$ $\lim _{t \rightarrow 0} \frac{1-\cos t}{t}=\frac{1}{2}$.
(c) $\lim _{(x, y) \rightarrow(0,0)} \frac{\sin \left(x^{2}+y^{2}\right)}{x^{2}+y^{2}}=1$.
3. (a) Along $x=y=0, \lim _{(x, y, z) \rightarrow(0,0,0)} \frac{(x+y+z)^{2}}{x^{2}+y^{2}+z^{2}}=1$ whereas, along $x=y=z$, $\lim _{(x, y, z) \rightarrow(0,0,0)} \frac{(x+y+z)^{2}}{x^{2}+y^{2}+z^{2}}=3$. Therefore the limit does not exist.
(b) For $x=0, \lim _{(x, y) \rightarrow(0,0)} \frac{x y \cos y}{4 x^{2}+y^{2}}=0$ and for $x=y, \lim _{(x, y) \rightarrow(0,0)} \frac{x y \cos y}{4 x^{2}+y^{2}}=\frac{1}{5}$. Therefore the limit does not exist.
4. Let $\left(x_{0}, y_{0}\right) \in \mathbb{R}^{2}$ and $x_{0} y_{0} \neq 0$. The function f is continuous at $\left(x_{0}, y_{0}\right)$ as $f\left(x_{n}, y_{n}\right) \rightarrow$ $f\left(x_{0}, y_{0}\right)$ when $\left(x_{n}, y_{n}\right) \rightarrow\left(x_{0}, y_{0}\right)$. Suppose $\left(x_{0}, y_{0}\right) \in \mathbb{R}^{2}$ such that $x_{0} y_{0}=0$ and $\left(x_{n}, y_{n}\right) \rightarrow\left(x_{0}, y_{0}\right)$. Since $x_{n} y_{n} \rightarrow 0, f\left(x_{n}, y_{n}\right) \rightarrow 1=f\left(x_{0}, y_{0}\right)$. Therefore f is continuous at $\left(x_{0}, y_{0}\right)$.
5. By AM-GM inequality, $|f(x, y)-f(0,0)| \leq\left|\frac{x^{3} y}{x^{4}+y^{2}}\right| \leq \frac{2 x\left(x^{4}+y^{2}\right)}{x^{4}+y^{2}} \rightarrow 0$ as $(x, y) \rightarrow(0,0)$.
6. Setting $f(x, y)=0$ for $x=y$ makes the function continuous.
7. Consider $f(x, y)=\frac{|x+y-1|}{|x+y|+1}$.
8. Suppose that there exists no such ϵ-neighborhood. Then for every n, there exists $X_{n} \in$ $B_{\frac{1}{n}}\left(X_{0}\right)=\left\{X \in \mathbb{R}^{3}:\left\|X-X_{0}\right\| \leq \frac{1}{n}\right\}$ such that $f\left(X_{n}\right) \leq 0$. Since $X_{n} \rightarrow X_{0}$, by the continuity of $f, f\left(X_{n}\right) \rightarrow f\left(X_{0}\right)$. Therefore $f\left(X_{0}\right) \leq 0$ which is a contradiction.
9. Easily follows from the definitions.
10. For $t \neq 0, \frac{f(0+t, 0)-f(0,0)}{t}=\frac{|t|}{t}$ and $\frac{f(0,0+t)-f(0,0)}{t}=\frac{|t|}{t}$. Therefore $f_{x}(0,0)$ and $f_{y}(0,0)$ do not exist. For $\left(x_{0}, y_{0}\right) \in \mathbb{R}^{2}$ and $t \neq 0, \frac{g\left(x_{0}+t, y_{0}\right)-g\left(x_{0}, y_{0}\right)}{t}=\frac{\left|y_{0}\right|\left(\left|x_{0}+t\right|-\left|x_{0}\right|\right)}{t}$. By allowing $t \rightarrow 0$, we see that $f_{x}(0,0)=0, f_{y}(0,0)=0$ and $f_{x}\left(0, y_{0}\right)$ does not exist if $y_{0} \neq 0$.
11. (a) Since $|f(x, y)-f(0,0)| \leq \frac{|y|\left|3 x^{2}-y^{2}\right|}{x^{2}+y^{2}} \leq \frac{|y|\left|3 x^{2}+3 y^{2}\right|}{x^{2}+y^{2}} \leq 3|y| \rightarrow 0$ as $(x, y) \rightarrow(0,0)$, f is continuous at $(0,0)$.
(b) $f_{y}(0,0)=\lim _{t \rightarrow 0} \frac{f(0, t)}{t}=-1$.
(c) Since $f_{y}(x, 0)=\lim _{t \rightarrow 0} \frac{f(x, t)-f(x, 0)}{t}=3$ for any $x \neq 0, f_{y}(x, 0) \nrightarrow f_{y}(0,0)$ as $x \rightarrow 0$. Therefore f_{y} is not continuous at $\left(x_{0}, y\right)$.
12. Let $\left(x_{0}, y_{0}\right) \in \mathbb{R}^{2}$ and $\left(x_{n}, y_{n}\right) \rightarrow\left(x_{0}, y_{0}\right)$. Then $f\left(\left(x_{n}, y_{n}\right)\right)=f\left(x_{n}(1,0)+y_{n}(0,1)\right)=$ $x_{n} f(1,0)+y_{n} f(0,1) \rightarrow x_{0} f((1,0))+y_{0} f((0,1))=f\left(\left(x_{0}, y_{0}\right)\right)$.
13. (a) If f is not bounded then for every n, there exists $\left(x_{n}, y_{n}\right) \in A$ such that $f\left(\left(x_{n}, y_{n}\right)\right)>$ n. Since $\left(\left(x_{n}, y_{n}\right)\right)$ is a bounded sequence, there exists a subsequence $\left(\left(x_{n_{k}}, y_{n_{k}}\right)\right)$ such that $\left(x_{n_{k}}, y_{n_{k}}\right) \rightarrow\left(x_{0}, y_{0}\right) \in A$. By the continuity of $f, f\left(\left(x_{n_{k}}, y_{n_{k}}\right)\right) \rightarrow f\left(x_{0}, y_{0}\right)$ which contradicts the assumption that $f\left(x_{n}, y_{n}\right)>n$ for every n.
(b) For every n, find $\left(x_{n}, y_{n}\right) \in A$ such that $\sup \{f(X): X \in A\}-\frac{1}{n} \leq f\left(x_{n}, y_{n}\right)$. Since $\left(\left(x_{n}, y_{n}\right)\right)$ is bounded, by Bolzano-Weierstrass theorem, there exists a subsequence $\left.\left(x_{n_{k}}, y_{n_{k}}\right)\right)$ converges, say to $X_{0}=\left(x_{0}, y_{0}\right)$. By the continuity of $f, f\left(x_{n}, y_{n}\right) \rightarrow$ $f\left(x_{0}, y_{0}\right) \geq \sup \{f(X): X \in A\}$, that is $f\left(X_{0}\right)=\sup \{f(X): X \in A\}$.
14. Let $X_{0}, Y_{0} \in S$ be such that $f\left(X_{0}\right)=M=\sup \{f(X): X \in S\}$ and $f\left(Y_{0}\right)=m=$ $\inf \{f(X): X \in S\}$ (see Problem 13). Note that $f(X) \in[m, M]$ for every $X \in S$. Suppose $\alpha \in(m, M)$. Consider the map $g(t)=f\left((1-t) Y_{0}+t X_{0}\right)$. Observe that $g:[0,1] \rightarrow \mathbb{R}$ is continuous, $g(0)=m$ and $g(1)=M$. By the intermediate value property, there exists $t_{0} \in(0,1)$ such that $g\left(t_{0}\right)=\alpha$, that is $f\left(\left(1-t_{0}\right) Y_{0}+t_{0} X_{0}\right)=\alpha$. Hence $f(S)=[m, M]$.
