1. Let $f(x, y)=|x|+|y|$ for $(x, y) \in \mathbb{R}^{2}$. Show that f is continuous at $(0,0)$ and no directional derivative of f at $(0,0)$ exists.
2. Let $f(x, y)=\sqrt{|x y|}$ for all $(x, y) \in \mathbb{R}^{2}$ and $(u, v) \in \mathbb{R}$ be such that $\|(u, v)\|=1$. Show that the directional derivative of f at $(0,0)$ in the direction (u, v) exists if only if $(u, v)=(1,0)$ or $(u, v)=(0,1)$.
3. Let $f(x, y)=\frac{x^{2} y}{x^{2}+y^{2}}$ for $(x, y) \neq(0,0)$ and $f(0,0)=0$. Show that the directional derivative of f at $(0,0)$ in all directions exist but f is not differentiable at $(0,0)$.
4. Consider the function $f(x, y)=\frac{3 x^{2} y-y^{3}}{x^{2}+y^{2}}$ for $(x, y) \neq(0,0)$ and $f(0,0)=0$. Find the directional derivative of f at $(0,0)$ in the direction $\frac{1}{\sqrt{2}}(1,1)$. Discuss the differentiabilty of f at $(0,0)$.
5. (a) Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ and $(u, v) \in \mathbb{R}^{2}$ be such that $\|(u, v)\|=1$. For $\left(x_{0}, y_{0}\right) \in \mathbb{R}^{2}$, show that $D_{\left(x_{0}, y_{0}\right)} f(u, v)$ is the derivative of $f\left(x_{0}+t u, y_{0}+t v\right)$ with respect to t at $t=0$.
(b) If $f(x, y)=x y$, using (a), find $D_{(1,1)} f\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$.
6. Let $f(x, y)=x^{2} e^{y}+\cos (x y)$. Find the directional derivative of f at $(1,2)$ in the direction $\left(\frac{3}{5}, \frac{4}{5}\right)$.
7. Let $f(x, y)=2 x^{2}+x y+y^{2}$ describe the temperature at (x, y). Suppose a bug is at $(1,1)$ and it decides to cool off. What is the best direction for it to move?
8. For $X \in \mathbb{R}^{3}$, define $f(X)=\|X\|$. Let $X_{0}=\left(x_{0}, y_{0}, z_{0}\right) \in \mathbb{R}^{3}$ and $\left\|X_{0}\right\|=1$,
(a) Show that $\nabla f\left(X_{0}\right)=X_{0}$.
(b) Find a unit normal to the sphere $f(x, y, z)=1$ at X_{0}.
(c) Find the equation of the tangent plane of the sphere $f(x, y, z)=1$ at X_{0}.
9. Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be differentiable and $R(t)=(x(t), y(t), z(t)), t \in \mathbb{R}$, be a differentiable curve. Suppose that $f(R(t))$ attains its minimum at some t_{0}. Show that $\nabla f\left(R\left(t_{0}\right)\right)$ is perpendicular to $R^{\prime}\left(t_{0}\right)$.
10. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be differentiable and $c \in \mathbb{R}$. Suppose that C is a curve (graph or parametric curve) described by $f(x, y)=c$. Assume that C has tangent at every point on the curve. For $\left(x_{0}, y_{0}\right) \in C$, let $\nabla f\left(x_{0}, y_{0}\right) \neq(0,0)$. Show that
(a) $\nabla f\left(x_{0}, y_{0}\right)$ is normal to C at $\left(x_{0}, y_{0}\right)$.
(b) The equation of the tangent line to the curve at $\left(x_{0}, y_{0}\right)$ is $f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+$ $f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)=0$.
(c) If T is a tangent vector for C at $\left(x_{0}, y_{0}\right)$ then $D_{\left(x_{0}, y_{0}\right)} f(T)=0$
11. Let $f(x, y)=6-x^{2}-4 y^{2}$. Find a vector which is perpendicular to
(a) the curve $f(x, y)=1$, i.e., $x^{2}+4 y^{2}=5$, at $(1,1)$.
(b) the surface $z=f(x, y)$ at the point $(1,1,1)$.
12. Consider the cone $z^{2}=x^{2}+y^{2}$.
(a) Find the equation of the tangent plane to the cone at $(1,1, \sqrt{2})$.
(b) Find an equation for the normal line to the cone at this point.
13. Consider the surface $z=f(x, y)=x^{2}-2 x y+2 y$. Find a point on the surface at which the surface has a horizontal tangent plane.

Practice Problems 28: Hints/Solutions

1. Let $(u, v) \in \mathbb{R}^{2}$ be arbitrary such that $\|(u, v)\|=1$. Then $\lim _{t \rightarrow 0} \frac{f(t u, t v)}{t}=\lim _{t \rightarrow 0} \frac{|t|| | u|+|v|)}{t}$ does not exist. Therefore no directional derivative of f exists at $(0,0)$.
2. The limit $\lim _{t \rightarrow 0} \frac{f(t u, t v)}{t}=\lim _{t \rightarrow 0} \frac{|t| \sqrt{|u v|}}{t}$ exists if and only if either $u=0$ or $v=0$.
3. Let $(u, v) \in \mathbb{R}^{2}$ be such that $\|(u, v)\|=1$. Then $D_{(u, v)} f(0,0)=\lim _{t \rightarrow 0} \frac{f(t u, t v)}{t}=u^{2} v$ but $D_{(0,0)} f(u, v) \neq \nabla f(0,0) \cdot(u, v)$ if u and v are non-zeros. Therefore f is not differentiable.
4. $D_{(0,0)} f\left(\frac{1}{\sqrt{2}}(1,1)\right)=\lim _{t \rightarrow 0} \frac{f\left(\frac{t}{\sqrt{2}}(1,1)\right)}{t}=\frac{1}{\sqrt{2}}$. If f is differentiable at $(0,0)$, then $D_{(0,0)} f\left(\frac{1}{\sqrt{2}}(1,1)\right)=\left.\left(f_{x}, f_{y}\right)\right|_{(0,0)} \cdot \frac{1}{\sqrt{2}}(1,1)$. But $\left.\left(f_{x}, f_{y}\right)\right|_{(0,0)} \cdot \frac{1}{\sqrt{2}}(1,1)=-\frac{1}{\sqrt{2}}$. Therefore f is not differentiable.
5. (a) This follows from the definition of $D_{\left(x_{0}, y_{0}\right)} f(u, v)$.
(b) By (a), $D_{(1,1)} f\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)=\left.\frac{d}{d t}\left[f\left(1+\frac{\sqrt{3}}{2} t, 1+\frac{1}{2} t\right)\right]\right|_{t=0}=\frac{1}{2}(1+\sqrt{3})$.
6. Since f_{x} and f_{y} are continuous, f is differentiable. Therefore $D_{(1,2)} f\left(\frac{3}{5}, \frac{4}{5}\right)=f_{x}(1,2) \cdot \frac{3}{5}+$ $f_{y}(1,2) \cdot \frac{4}{5}$.
7. The direction of the fastest decrease in the temperature is $-\nabla f(1,1)=-(5,3)$.
8. (a) For $X=(x, y, z), f(X)=\sqrt{x^{2}+y^{2}+z^{2}}$ and hence $\nabla f(X)=\left.\left(f_{x}, f_{y}, f_{z}\right)\right|_{X}=$ $\left(\frac{x}{\sqrt{x^{2}+y^{2}+z^{2}}}, \frac{y}{\sqrt{x^{2}+y^{2}+z^{2}}}, \frac{z}{\sqrt{x^{2}+y^{2}+z^{2}}}\right)$. Therefore $\nabla f\left(X_{0}\right)=X_{0}$.
(b) The unit normal to the level surface $f(x, y, z)=1$ at X_{0} is $\nabla f\left(X_{0}\right)=X_{0}$.
(c) The equation of the tangent plane at $X_{0}=\left(x_{0}, y_{0}, z_{0}\right)$ is $x x_{0}+y y_{0}+z z_{0}=1$.
9. Since $\left.\frac{d f}{d t}\right|_{R\left(t_{0}\right)}=0$, the problem follows from the chain rule.
10. (a) Suppose that C is described by $R(t)=(x(t), y(t))$. Since $f(R(t))=c$, by the chain rule $\nabla f(R(t)) \cdot R^{\prime}(t)=0$ which proves (a).
(b) This follows from (a).
(c) $D_{\left(x_{0}, y_{0}\right)} f(T)=\nabla f\left(x_{0}, y_{0}\right) \cdot T$ which is 0 by (a).
11. (a) The gradient $\nabla f(1,1)=(-2,-8)$ is a normal to the curve at $(1,1)$.
(b) If $g(x, y, z)=f(x, y)-z=6-x^{2}-4 y^{2}-z$ then the given surface is the level surface $g(x, y, z)=0$. The gradient $\nabla g(1,1,1)=(-2-8,-1)$ is a required normal.
12. Since the cone is the level surface $g(x, y, z)=x^{2}+y^{2}-z^{2}=0, \nabla g(1,1, \sqrt{2})=(2,2,-2 \sqrt{2})$ is a normal to the tangent plane. Therefore the equation of the tangent plane is $2(x-1)+2(y-$ $1)-2 \sqrt{2}(z-\sqrt{2})=0$. An equation of the normal line is $(x, y, z)=(1,1, \sqrt{2})+t(2,2,-2 \sqrt{2})$.
13. A normal at a point (x, y, z) on the level surface $g(x, y, z)=z-f(x, y)=0$ is $\nabla g(x, y, z)=$ $(-2 x+2 y, 2 x-2,1)$. Since the horizontal tangent plane to the surface at a point has the normal $(0,0,1)$, the point required satisfy the equations $-2 x+2 y=0$ and $2 x-2=0$; i.e., $x=1$ and $y=1$. The required point on the surface is $(1,1,1)$.
