The following two definitions are used in this problem sheet.
Definition 1: Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$. We say that f is convex if $f[(1-\lambda) X+\lambda Y] \leq(1-\lambda) f(X)+\lambda f(Y)$ for every $X, Y \in \mathbb{R}^{2}$ and every $0 \leq \lambda \leq 1$. (Geometrically, if we take two points ($X, f(X)$) and $(Y, f(Y))$ on the graph of f, then the graph of f lies below the line segment joining the two points chosen).

Definition 2: A 2×2 matrix $M=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is said to be non-negative definite if the matrix multiplication $\left(\begin{array}{ll}h & k\end{array}\right) A\binom{h}{k}=a h^{2}+(b+c) h k+d k^{2} \geq 0$ for all $h, k \in \mathbb{R}$.

1. Let $f(x, y)=\frac{x^{2} y-y^{2} x}{x+y}$ if $(x, y) \neq(0,0)$ and $f(0,0)=0$. Show that, at $(0,0)$,
(a) f is continuous.
(b) f_{x} and f_{y} are continuous.
(c) f is differentiable.
(d) $f_{x y} \neq f_{y x}$.
2. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be differentiable and $M \in \mathbb{R}$ be such that $\left|f_{x}(X)\right| \leq M$ and $\left|f_{y}(X)\right| \leq M$ for all $X \in \mathbb{R}^{2}$. Show that $|f(X)-f(Y)| \leq 2 M\|X-Y\|$ for all $X, Y \in \mathbb{R}^{2}$.
3. (Tangent plane approximation): Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ and $\left(x_{0}, y_{0}\right) \in \mathbb{R}^{2}$. Suppose that f_{x} and f_{y} are continuous and they have continuous partial derivatives on \mathbb{R}^{2}. Let $z=L(x, y)$ be the equation of the tangent plane for the surface $z=f(x, y)$ at $\left(x_{0}, y_{0}, f\left(x_{0}, y_{0}\right)\right)$. Show that
(a) $f(x, y)=L(x, y)+R$ where $R \rightarrow 0$ as $(x, y) \rightarrow\left(x_{0}, y_{0}\right)$.
(b) $e^{y} \cos x=1+y+R$ where $R \rightarrow 0$ as $(x, y) \rightarrow(0,0)$.
4. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a differentiable function. Show that f is convex if and only if $f(X) \geq$ $f\left(X_{0}\right)+f^{\prime}\left(X_{0}\right) \cdot\left(X-X_{0}\right)$ for all $X, X_{0} \in \mathbb{R}^{2}$ (geometrically, the graph of f lies above the tangent plane at every point on the graph).
5. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$. Suppose that f_{x} and f_{y} are continuous and they have continuous partial derivatives. Then f is convex if, for all $X \in \mathbb{R}^{2}$, the matrix $M_{X}=\left(\begin{array}{cc}f_{x x}(X) & f_{x y}(X) \\ f_{y x}(X) & f_{y y}(X)\end{array}\right)$ is non-negative definite (See the definition given above).
6. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ and $X \in \mathbb{R}^{2}$. Denote $Q(X)=\left(h^{2} f_{x x}+2 h k f_{x y}+k^{2} f_{y y}\right)(X)$. Show that
(a) $f_{x x}(X) Q(X)=\left(h f_{x x}+k f_{x y}\right)^{2}(X)+k^{2}\left(f_{x x} f_{y y}-f_{x y}^{2}\right)(X)$.
(b) $f_{y y}(X) Q(X)=\left(h f_{y y}+k f_{x y}\right)^{2}(X)+k^{2}\left(f_{x x} f_{y y}-f_{x y}^{2}\right)(X)$.
7. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$. Suppose that f_{x} and f_{y} are continuous and they have continuous partial derivatives. Show that f is convex if for all $(x, y) \in \mathbb{R}^{2}$ the following properties hold
(a) $\left(f_{x x} f_{y y}-f_{x y}\right)^{2}(x, y) \geq 0$,
(b) $f_{x x}(x, y) \geq 0$ or $f_{y y}(x, y) \geq 0$.
8. Show that the function $f(x, y)=x^{2}+y^{2}$ is convex.
9. (*) Suppose that $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ has continuous second order partial derivatives. For $\left(x_{0}, y_{0}\right),(h, k) \in \mathbb{R}^{2}$, define

$$
H(h, k)=\left[f\left(x_{0}+h, y_{0}+k\right)-f\left(x_{0}+h, y_{0}\right)\right]-\left[f\left(x_{0}, y_{0}+k\right)-f\left(x_{0}, y_{0}\right)\right] .
$$

Show that
(a) there exists \bar{x} between x_{0} and $x_{0}+h$ such that $H(h, k)=\left[f_{x}\left(\bar{x}, y_{0}+k\right)-f_{x}\left(\bar{x}, y_{0}\right)\right] h$.
(b) there exists \bar{y} between y_{0} and $y_{0}+k$ such that $H(h, k)=f_{x y}(\bar{x}, \bar{y}) h k$.
(c) $f_{x y}\left(x_{0}, y_{0}\right)=\lim _{(h, k) \rightarrow(0,0)} \frac{1}{h k} H(h, k)$.
(d) $f_{x y}\left(x_{0}, y_{0}\right)=f_{y x}\left(x_{0}, y_{0}\right)$.

Practice Problems 29: Hints/Solutions

1. (a) Note that $f(x, y)=\frac{x-y}{\frac{1}{x}+\frac{1}{y}} \rightarrow 0=f(0,0)$ as $(x, y) \rightarrow(0,0)$.
(b) If $(x, y) \neq(0,0)$, then $f_{x}(x, y)=\frac{y\left(x^{2}+2 x y-y^{2}\right)}{(x+y)^{2}}$ and $f_{y}(x, y)=\frac{x\left(x^{2}-2 x y-y^{2}\right)}{(x+y)^{2}}$. At $(0,0)$, $f_{x}(0,0)=f_{y}(0,0)=0$. Now $\left|f_{x}(x, y)\right| \leq \frac{|y||x+y|^{2}}{|x+y|^{2}}=|y| \rightarrow 0$ as $(x, y) \rightarrow(0,0)$. This shows that $f_{x}(x, y) \rightarrow f_{x}(0,0)$ as $(x, y) \rightarrow(0,0)$. Therefore f_{x} is continuous at $(0,0)$. Similarly we show that f_{y} is continuous at $(0,0)$.
(c) The differentiabilty of f at $(0,0)$ follows from (b).
(d) By definition, $f_{x y}(0,0)=\lim _{k \rightarrow 0} \frac{f_{x}(0, k)-f_{x}(0,0)}{k}=\lim _{k \rightarrow 0} \frac{-k^{3}}{k^{3}}=-1$. Similarly, verify that $f_{y x}(0,0)=1$.
2. Follows from the mean value theorem.
3. The equation of the tangent plane is $z=L(x, y)$ where, for any $(x, y) \in \mathbb{R}^{2}, L(x, y)=$ $f\left(x_{0}, y_{0}\right)+f^{\prime}\left(x_{0}, y_{0}\right) \cdot\left(x-x_{0}, y-y_{0}\right)$.
(a) By the EMVT there exists some C lying on the line segment joining (x, y) and $\left(x_{0}, y_{0}\right)$ such that $f(x, y)=L(x, y)+R(x, y)$ where $R(x, y)=\frac{1}{2}\left[\left(x-x_{0}\right)^{2} f_{x x}+2\left(x-x_{0}\right)(y-\right.$ $\left.\left.y_{0}\right) f_{x y}+\left(y-y_{0}\right)^{2} f_{y y}\right](C)$. By the continuity of the second order partial derivatives of $f, R(x, y) \rightarrow 0$ as $(x, y) \rightarrow\left(x_{0}, y_{0}\right)$.
(b) Let $\left(x_{0}, y_{0}\right)=(0,0)$ and apply (a).
4. Suppose that f is convex. Let $X, X_{0} \in \mathbb{R}^{2}$ and $\lambda \in[0,1]$. Then $f\left(X_{0}+\lambda\left(X-X_{0}\right)\right) \leq$ $f\left(X_{0}\right)+\lambda\left(f(X)-f\left(X_{0}\right)\right)$. This implies that $\frac{1}{\lambda}\left[f\left(X_{0}+\lambda\left(X-X_{0}\right)\right)-f\left(X_{0}\right)\right] \leq f(X)-f\left(X_{0}\right)$. Therefore $\frac{1}{\lambda}\left[f\left(X_{0}+\lambda\left(X-X_{0}\right)\right)-f\left(X_{0}\right)\right]-f^{\prime}\left(X_{0}\right) \cdot\left(X-X_{0}\right) \leq f(X)-f\left(X_{0}\right)-f^{\prime}\left(X_{0}\right)$. ($X-X_{0}$). Allow $\lambda \rightarrow 0^{+}$.
Conversely, suppose that $f(X) \geq f\left(X_{0}\right)+f^{\prime}\left(X_{0}\right) \cdot\left(X-X_{0}\right)$ for all $X, X_{0} \in \mathbb{R}^{2}$. Let $X_{1}, X_{2} \in \mathbb{R}^{2}$ and $X_{0}=(1-\lambda) X_{1}+\lambda X_{2}$ for some $\lambda \in[0,1]$. Then, by the assumption, $f\left(X_{1}\right)-f\left(X_{0}\right) \geq f^{\prime}\left(X_{0}\right) \cdot\left(X_{1}-X_{0}\right)$ and $f\left(X_{2}\right)-f\left(X_{0}\right) \geq f^{\prime}\left(X_{0}\right) \cdot\left(X_{2}-X_{0}\right)$. From these two inequalities we get that $(1-\lambda) f\left(X_{1}\right)+\lambda f\left(X_{2}\right)-f\left(X_{0}\right) \geq 0$. This proves the convexity of f.
5. This follows from the EMVT and Problem 4.
6. Trivial.
7. Follows from Problem 5 and Problem 6.
8. By applying either Problem 5 or Problem 7 we see that f is convex.
9. (a) Define $g(x)=f\left(x, y_{0}+k\right)-f\left(x, y_{0}\right)$. Then $H(h, k)=g\left(x_{0}+h\right)-g\left(x_{0}\right)$. By the MVT (for one variable), there exists $\bar{x} \in \mathbb{R}$, between x_{0} and $x_{0}+h$, such that $g\left(x_{0}+h\right)-g\left(x_{0}\right)=g^{\prime}(\bar{x}) h$. Note that $g^{\prime}(\bar{x})=f_{x}\left(\bar{x}, y_{0}+k\right)-f_{x}\left(\bar{x}, y_{0}\right)$. This proves (a).
(b) Again apply the MVT for one variable to obtain (b).
(c) By the continuity of $f_{x y}$, we have $f_{x y}\left(x_{0}, y_{0}\right)=\lim _{(h, k) \rightarrow(0,0)} f_{x y}\left(x_{0}+h, y_{0}+k\right)$ $=\lim _{(h, k) \rightarrow(0,0)} f_{x y}(\bar{x}, \bar{y})$. Apply (b).
(d) By exchanging the rolls of x and y, we show that $f_{y x}\left(x_{0}, y_{0}\right)=\lim _{(h, k) \rightarrow(0,0)} \frac{1}{h k} H(h, k)$.
