
PP 29 : Mixed Partial Derivatives, Mean Value Theorem and Extended Mean Value theorem

The following two definitions are used in this problem sheet.

Definition 1 : Let f : R2 → R. We say that f is convex if f [(1−λ)X+λY ] ≤ (1−λ)f(X)+λf(Y )
for every X,Y ∈ R2 and every 0 ≤ λ ≤ 1. (Geometrically, if we take two points (X, f(X)) and
(Y, f(Y )) on the graph of f , then the graph of f lies below the line segment joining the two
points chosen).

Definition 2 : A 2 × 2 matrix M =

(
a b
c d

)
is said to be non-negative definite if the matrix

multiplication
(
h k

)
A

(
h
k

)
= ah2 + (b+ c)hk + dk2 ≥ 0 for all h, k ∈ R.

—————————————————————————————————————————

1. Let f(x, y) = x2y−y2x
x+y if (x, y) 6= (0, 0) and f(0, 0) = 0. Show that, at (0, 0),

(a) f is continuous.

(b) fx and fy are continuous.

(c) f is differentiable.

(d) fxy 6= fyx.

2. Let f : R2 → R be differentiable and M ∈ R be such that |fx(X)| ≤M and |fy(X)| ≤M
for all X ∈ R2. Show that |f(X)− f(Y )| ≤ 2M‖X − Y ‖ for all X,Y ∈ R2.

3. (Tangent plane approximation): Let f : R2 → R and (x0, y0) ∈ R2. Suppose that fx and
fy are continuous and they have continuous partial derivatives on R2. Let z = L(x, y) be
the equation of the tangent plane for the surface z = f(x, y) at (x0, y0, f(x0, y0)). Show
that

(a) f(x, y) = L(x, y) +R where R→ 0 as (x, y)→ (x0, y0).

(b) ey cosx = 1 + y +R where R→ 0 as (x, y)→ (0, 0).

4. Let f : R2 → R be a differentiable function. Show that f is convex if and only if f(X) ≥
f(X0) + f ′(X0) · (X −X0) for all X,X0 ∈ R2 (geometrically, the graph of f lies above the
tangent plane at every point on the graph).

5. Let f : R2 → R. Suppose that fx and fy are continuous and they have continuous partial

derivatives. Then f is convex if, for all X ∈ R2, the matrix MX =

(
fxx(X) fxy(X)
fyx(X) fyy(X)

)
is non-negative definite (See the definition given above).

6. Let f : R2 → R and X ∈ R2. Denote Q(X) = (h2fxx + 2hkfxy + k2fyy)(X). Show that

(a) fxx(X)Q(X) = (hfxx + kfxy)
2(X) + k2(fxxfyy − f2xy)(X).

(b) fyy(X)Q(X) = (hfyy + kfxy)
2(X) + k2(fxxfyy − f2xy)(X).

7. Let f : R2 → R. Suppose that fx and fy are continuous and they have continuous partial
derivatives. Show that f is convex if for all (x, y) ∈ R2 the following properties hold

(a) (fxxfyy − fxy)2(x, y) ≥ 0,

(b) fxx(x, y) ≥ 0 or fyy(x, y) ≥ 0.



8. Show that the function f(x, y) = x2 + y2 is convex.

9. (*) Suppose that f : R2 → R has continuous second order partial derivatives. For
(x0, y0), (h, k) ∈ R2, define

H(h, k) = [f(x0 + h, y0 + k)− f(x0 + h, y0)]− [f(x0, y0 + k)− f(x0, y0)] .

Show that

(a) there exists x between x0 and x0 +h such that H(h, k) = [fx(x, y0 + k)− fx(x, y0)]h.

(b) there exists y between y0 and y0 + k such that H(h, k) = fxy(x, y)hk.

(c) fxy(x0, y0) = lim(h,k)→(0,0)
1
hkH(h, k).

(d) fxy(x0, y0) = fyx(x0, y0).

Practice Problems 29: Hints/Solutions

1. (a) Note that f(x, y) = x−y
1
x
+ 1

y

→ 0 = f(0, 0) as (x, y)→ (0, 0).

(b) If (x, y) 6= (0, 0), then fx(x, y) = y(x2+2xy−y2)
(x+y)2

and fy(x, y) = x(x2−2xy−y2)
(x+y)2

. At (0, 0),

fx(0, 0) = fy(0, 0) = 0. Now |fx(x, y)| ≤ |y||x+y|2
|x+y|2 = |y| → 0 as (x, y) → (0, 0). This

shows that fx(x, y)→ fx(0, 0) as (x, y)→ (0, 0). Therefore fx is continuous at (0, 0).
Similarly we show that fy is continuous at (0, 0).

(c) The differentiabilty of f at (0, 0) follows from (b).

(d) By definition, fxy(0, 0) = limk→0
fx(0,k)−fx(0,0)

k = limk→0
−k3
k3

= −1. Similarly, verify
that fyx(0, 0) = 1.

2. Follows from the mean value theorem.

3. The equation of the tangent plane is z = L(x, y) where, for any (x, y) ∈ R2, L(x, y) =
f(x0, y0) + f ′(x0, y0) · (x− x0, y − y0).

(a) By the EMVT there exists some C lying on the line segment joining (x, y) and (x0, y0)
such that f(x, y) = L(x, y) +R(x, y) where R(x, y) = 1

2 [(x− x0)2fxx + 2(x− x0)(y −
y0)fxy + (y − y0)2fyy](C). By the continuity of the second order partial derivatives
of f , R(x, y)→ 0 as (x, y)→ (x0, y0).

(b) Let (x0, y0) = (0, 0) and apply (a).

4. Suppose that f is convex. Let X,X0 ∈ R2 and λ ∈ [0, 1]. Then f(X0 + λ(X − X0)) ≤
f(X0)+λ(f(X)−f(X0)). This implies that 1

λ [f(X0+λ(X−X0))−f(X0)] ≤ f(X)−f(X0).
Therefore 1

λ [f(X0 + λ(X −X0))− f(X0)]− f ′(X0) · (X −X0) ≤ f(X)− f(X0)− f ′(X0) ·
(X −X0). Allow λ→ 0+.

Conversely, suppose that f(X) ≥ f(X0) + f ′(X0) · (X − X0) for all X,X0 ∈ R2. Let
X1, X2 ∈ R2 and X0 = (1 − λ)X1 + λX2 for some λ ∈ [0, 1]. Then, by the assumption,
f(X1)− f(X0) ≥ f ′(X0) · (X1−X0) and f(X2)− f(X0) ≥ f ′(X0) · (X2−X0). From these
two inequalities we get that (1−λ)f(X1)+λf(X2)−f(X0) ≥ 0. This proves the convexity
of f .

5. This follows from the EMVT and Problem 4.

6. Trivial.



7. Follows from Problem 5 and Problem 6.

8. By applying either Problem 5 or Problem 7 we see that f is convex.

9. (a) Define g(x) = f(x, y0 + k) − f(x, y0). Then H(h, k) = g(x0 + h) − g(x0). By the
MVT (for one variable), there exists x ∈ R, between x0 and x0 + h, such that
g(x0 + h)− g(x0) = g′(x)h. Note that g′(x) = fx(x, y0 + k)− fx(x, y0). This proves
(a).

(b) Again apply the MVT for one variable to obtain (b).

(c) By the continuity of fxy, we have fxy(x0, y0) = lim(h,k)→(0,0) fxy(x0 + h, y0 + k)
= lim(h,k)→(0,0) fxy(x, y). Apply (b).

(d) By exchanging the rolls of x and y, we show that fyx(x0, y0) = lim(h,k)→(0,0)
1
hkH(h, k).


