Practice Problems 3 : Cauchy criterion, Subsequence

1. Show that the sequence $\left(x_{n}\right)$ defined below satisfies the Cauchy criterion.
(a) $x_{1}=1$ and $x_{n+1}=1+\frac{1}{x_{n}}$ for all $n \geq 1$
(b) $x_{1}=1$ and $x_{n+1}=\frac{1}{2+x_{n}^{2}}$ for all $n \geq 1$.
(c) $x_{1}=1$ and $x_{n+1}=\frac{1}{6}\left(x_{n}^{2}+8\right)$ for all $n \geq 1$.
2. Let $\left(x_{n}\right)$ be a sequence of positive real numbers. Prove or disprove the following statements.
(a) If $x_{n+1}-x_{n} \rightarrow 0$ then (x_{n}) converges.
(b) If $\left|x_{n+2}-x_{n+1}\right|<\left|x_{n+1}-x_{n}\right|$ for all $n \in \mathbb{N}$ then $\left(x_{n}\right)$ converges.
(c) If $\left(x_{n}\right)$ satisfies the Cauchy criterion, then there exists an $\alpha \in \mathbb{R}$ such that $0<\alpha<1$ and $\left|x_{n+1}-x_{n}\right| \leq \alpha\left|x_{n}-x_{n-1}\right|$ for all $n \in \mathbb{N}$.
3. Let $\left(x_{n}\right)$ be a sequence of integers such that $x_{n+1} \neq x_{n}$ for all $n \in \mathbb{N}$. Prove or disprove the following statements.
(a) The sequence $\left(x_{n}\right)$ does not satisfy the Cauchy criterion.
(b) The sequence $\left(x_{n}\right)$ cannot have a convergent subsequence.
4. Suppose that $0<\alpha<1$ and that $\left(x_{n}\right)$ is a sequence satisfying the condition: $\left|x_{n+1}-x_{n}\right| \leq \alpha^{n}, \quad n=1,2,3, \ldots$. Show that $\left(x_{n}\right)$ satisfies the Cauchy criterion.
5. Let $\left(x_{n}\right)$ be defined by: $x_{1}=\frac{1}{1!}, x_{2}=\frac{1}{1!}-\frac{1}{2!}, \ldots, x_{n}=\frac{1}{1!}-\frac{1}{2!}+\ldots+\frac{(-1)^{n+1}}{n!}$. Show that the sequence converges.
6. Let $1 \leq x_{1} \leq x_{2} \leq 2$ and $x_{n+2}=\sqrt{x_{n+1} x_{n}}, n \in \mathbb{N}$. Show that $\frac{x_{n+1}}{x_{n}} \geq \frac{1}{2}$ for all $n \in \mathbb{N},\left|x_{n+1}-x_{n}\right| \leq \frac{2}{3}\left|x_{n}-x_{n-1}\right|$ for all $n \in \mathbb{N}$ and $\left(x_{n}\right)$ converges.
7. $\left(^{*}\right)$ Show that a sequence $\left(x_{n}\right)$ of real numbers has no convergent subsequence if and only if $\left|x_{n}\right| \rightarrow \infty$.
8. (*) Let $\left(x_{n}\right)$ be a sequence in \mathbb{R} and $x_{0} \in \mathbb{R}$. Suppose that every subsequence of $\left(x_{n}\right)$ has a convergent subsequence converging to x_{0}. Show that $x_{n} \rightarrow x_{0}$.
9. $\left(^{*}\right)$ Let $\left(x_{n}\right)$ be a sequence in \mathbb{R}. We say that a positive integer n is a peak of the sequence if $m>n$ implies $x_{n}>x_{m}$ (i.e., if x_{n} is greater than every subsequent term in the sequence).
(a) If $\left(x_{n}\right)$ has infinitely many peaks, show that it has a decreasing subsequence.
(b) If $\left(x_{n}\right)$ has only finitely many peaks, show that it has an increasing subsequence.
(c) From (a) and (b) conclude that every sequence in \mathbb{R} has a monotone subsequence. Further, every bounded sequence in \mathbb{R} has a convergent subsequence (An alternate proof of Bolzano-Weierstrass Theorem).

Hints/Solutions

1. (a) Note that $\left|x_{n+1}-x_{n}\right|=\left|\frac{1}{x_{n}}-\frac{1}{x_{n-1}}\right|=\left|\frac{x_{n-1}-x_{n}}{x_{n} x_{n-1}}\right|$ and $\left|x_{n} x_{n-1}\right|=\left|\left(1+\frac{1}{x_{n-1}}\right) x_{n-1}\right|=$ $\left|x_{n-1}+1\right| \geq 2$. This implies that $\left|x_{n+1}-x_{n}\right| \leq \frac{1}{2}\left|x_{n}-x_{n-1}\right|$. Hence $\left(x_{n}\right)$ satisfies the contractive condition and therefore it satisfies the Cauchy criterion.
(b) Observe that $\left|x_{n+1}-x_{n}\right|=\frac{\left|x_{n}^{2}-x_{n-1}^{2}\right|}{\left(2+x_{n}^{2}\right)\left(2+x_{n-1}^{2}\right)} \leq \frac{\left|x_{n}-x_{n-1}\right|\left|x_{n}+x_{n-1}\right|}{4} \leq \frac{2}{4}\left|x_{n}-x_{n-1}\right|$.
(c) We have $\left|x_{n+1}-x_{n}\right| \leq \frac{\left|x_{n}-x_{n-1}\right|\left|x_{n}+x_{n-1}\right|}{6} \leq \frac{4}{6}\left|x_{n}-x_{n-1}\right|$.
2. (a) False. Choose $x_{n}=\sqrt{n}$ and observe that $x_{n+1}-x_{n}=\frac{1}{\sqrt{n+1}+\sqrt{n}} \rightarrow 0$.
(b) False. For $x_{n}=\sqrt{n},\left|x_{n+2}-x_{n+1}\right|=|\sqrt{n+2}-\sqrt{n+1}|<\frac{1}{\sqrt{n+1}+\sqrt{n}}=\left|x_{n+1}-x_{n}\right|$.
(c) False. Take $x_{n}=\frac{1}{n}$. If $\left|\frac{1}{n+1}-\frac{1}{n}\right| \leq \alpha\left|\frac{1}{n}-\frac{1}{n-1}\right|$ for some $\alpha>0$, show that $\alpha \geq 1$.
3. (a) True. Because $\left|x_{n+1}-x_{n}\right| \nrightarrow 0$ as $n \rightarrow \infty$.
(b) False. Consider $x_{n}=(-1)^{n}$.
4. Let $n>m$. Then $\left|x_{n}-x_{m}\right| \leq\left|x_{n}-x_{n-1}\right|+\left|x_{n-1}-x_{n-2}\right|+\cdots+\left|x_{m+1}-x_{m}\right|$

$$
\leq \alpha^{n-1}+\alpha^{n-2}+\cdots+\alpha^{m}=\alpha^{m}\left[1+\alpha+\cdots+\alpha^{n-1+m}\right] \leq \frac{\alpha^{m}}{1-\alpha} \rightarrow 0 \text { as }
$$

$m \rightarrow \infty$.
Thus (x_{n}) satisfies the Cauchy criterion.
5. Use Problem 4.
6. Since $1 \leq x_{n} \leq 2, \frac{x_{n+1}}{x_{n}} \geq \frac{1}{2}$. Observe that $x_{n+1}^{2}-x_{n}^{2}=x_{n} x_{n-1}-x_{n}^{2}=x_{n}\left(x_{n-1}-x_{n}\right)$. Therefore $\left|x_{n+1}-x_{n}\right|=\left|\frac{x_{n}}{x_{n+1}+x_{n}}\right|\left|x_{n-1}-x_{n}\right| \leq \frac{2}{3}\left|x_{n}-x_{n-1}\right|$.
7. Suppose $\left|x_{n}\right| \rightarrow \infty$. If $\left(x_{n_{k}}\right)$ is a subsequence of $\left(x_{n}\right)$, then observe that $\left|x_{n_{k}}\right| \rightarrow \infty$. If $\left|x_{n}\right| \nrightarrow \infty$, then there exists a bounded subsequence of $\left(x_{n}\right)$. Apply BolzanoWeierstrass theorem.
8. Suppose $x_{n} \nrightarrow x_{0}$. Then there exists $\epsilon_{0}>0$ and a subsequence $\left(x_{n_{k}}\right)$ of $\left(x_{n}\right)$ such that $\left|x_{n_{k}}-x_{0}\right| \geq \epsilon_{0}$ for all n_{k}. Note that $\left(x_{n_{k}}\right)$ has no subsequence converging to x_{0}.
9. (a) If (x_{n}) has infinitely many peaks, $n_{1}<n_{2}<\ldots<n_{j}<\ldots$. Then the subsequence $\left(x_{n_{j}}\right)$ is decreasing.
(b) Suppose there are only finite peaks and let N be the last peak. Since $n_{1}=N+1$ is not a peak, there exists $n_{2}>n_{1}$ such that $x_{n_{2}} \geq x_{n_{1}}$. Again $n_{2}>N$ is not a peak, there exists $n_{3}>n_{2}$ such that $x_{n_{3}} \geq x_{n_{2}}$. Continuing this process we find an increasing sequence ($x_{n_{k}}$).

