Practice Problems 3: Cauchy criterion, Subsequence

- 1. Show that the sequence (x_n) defined below satisfies the Cauchy criterion.
 - (a) $x_1 = 1$ and $x_{n+1} = 1 + \frac{1}{x_n}$ for all $n \ge 1$
 - (b) $x_1 = 1$ and $x_{n+1} = \frac{1}{2+x_n^2}$ for all $n \ge 1$.
 - (c) $x_1 = 1$ and $x_{n+1} = \frac{1}{6}(x_n^2 + 8)$ for all $n \ge 1$.
- 2. Let (x_n) be a sequence of positive real numbers. Prove or disprove the following statements.
 - (a) If $x_{n+1} x_n \to 0$ then (x_n) converges.
 - (b) If $|x_{n+2} x_{n+1}| < |x_{n+1} x_n|$ for all $n \in \mathbb{N}$ then (x_n) converges.
 - (c) If (x_n) satisfies the Cauchy criterion, then there exists an $\alpha \in \mathbb{R}$ such that $0 < \alpha < 1$ and $|x_{n+1} x_n| \le \alpha |x_n x_{n-1}|$ for all $n \in \mathbb{N}$.
- 3. Let (x_n) be a sequence of integers such that $x_{n+1} \neq x_n$ for all $n \in \mathbb{N}$. Prove or disprove the following statements.
 - (a) The sequence (x_n) does not satisfy the Cauchy criterion.
 - (b) The sequence (x_n) cannot have a convergent subsequence.
- 4. Suppose that $0 < \alpha < 1$ and that (x_n) is a sequence satisfying the condition: $|x_{n+1} x_n| \le \alpha^n$, $n = 1, 2, 3, \ldots$ Show that (x_n) satisfies the Cauchy criterion.
- 5. Let (x_n) be defined by: $x_1 = \frac{1}{1!}, x_2 = \frac{1}{1!} \frac{1}{2!}, ..., x_n = \frac{1}{1!} \frac{1}{2!} + ... + \frac{(-1)^{n+1}}{n!}$. Show that the sequence converges.
- 6. Let $1 \le x_1 \le x_2 \le 2$ and $x_{n+2} = \sqrt{x_{n+1}x_n}$, $n \in \mathbb{N}$. Show that $\frac{x_{n+1}}{x_n} \ge \frac{1}{2}$ for all $n \in \mathbb{N}$, $|x_{n+1} x_n| \le \frac{2}{3}|x_n x_{n-1}|$ for all $n \in \mathbb{N}$ and (x_n) converges.
- 7. (*) Show that a sequence (x_n) of real numbers has no convergent subsequence if and only if $|x_n| \to \infty$.
- 8. (*) Let (x_n) be a sequence in \mathbb{R} and $x_0 \in \mathbb{R}$. Suppose that every subsequence of (x_n) has a convergent subsequence converging to x_0 . Show that $x_n \to x_0$.
- 9. (*) Let (x_n) be a sequence in \mathbb{R} . We say that a positive integer n is a peak of the sequence if m > n implies $x_n > x_m$ (i.e., if x_n is greater than every subsequent term in the sequence).
 - (a) If (x_n) has infinitely many peaks, show that it has a decreasing subsequence.
 - (b) If (x_n) has only finitely many peaks, show that it has an increasing subsequence.
 - (c) From (a) and (b) conclude that every sequence in \mathbb{R} has a monotone subsequence. Further, every bounded sequence in \mathbb{R} has a convergent subsequence (An alternate proof of Bolzano-Weierstrass Theorem).

Hints/Solutions

- 1. (a) Note that $|x_{n+1}-x_n|=|\frac{1}{x_n}-\frac{1}{x_{n-1}}|=|\frac{x_{n-1}-x_n}{x_nx_{n-1}}|$ and $|x_nx_{n-1}|=|(1+\frac{1}{x_{n-1}})x_{n-1}|=|x_{n-1}+1|\geq 2$. This implies that $|x_{n+1}-x_n|\leq \frac{1}{2}|x_n-x_{n-1}|$. Hence (x_n) satisfies the contractive condition and therefore it satisfies the Cauchy criterion.
 - (b) Observe that $|x_{n+1} x_n| = \frac{|x_n^2 x_{n-1}^2|}{(2 + x_n^2)(2 + x_{n-1}^2)} \le \frac{|x_n x_{n-1}||x_n + x_{n-1}|}{4} \le \frac{2}{4}|x_n x_{n-1}|.$
 - (c) We have $|x_{n+1} x_n| \le \frac{|x_n x_{n-1}||x_n + x_{n-1}|}{6} \le \frac{4}{6}|x_n x_{n-1}|$.
- 2. (a) False. Choose $x_n = \sqrt{n}$ and observe that $x_{n+1} x_n = \frac{1}{\sqrt{n+1} + \sqrt{n}} \to 0$.
 - (b) False. For $x_n = \sqrt{n}$, $|x_{n+2} x_{n+1}| = |\sqrt{n+2} \sqrt{n+1}| < \frac{1}{\sqrt{n+1} + \sqrt{n}} = |x_{n+1} x_n|$.
 - (c) False. Take $x_n = \frac{1}{n}$. If $\left|\frac{1}{n+1} \frac{1}{n}\right| \leq \alpha \left|\frac{1}{n} \frac{1}{n-1}\right|$ for some $\alpha > 0$, show that $\alpha \geq 1$.
- 3. (a) True. Because $|x_{n+1} x_n| \to 0$ as $n \to \infty$.
 - (b) False. Consider $x_n = (-1)^n$.
- 4. Let n > m. Then $|x_n x_m| \le |x_n x_{n-1}| + |x_{n-1} x_{n-2}| + \dots + |x_{m+1} x_m|$ $\le \alpha^{n-1} + \alpha^{n-2} + \dots + \alpha^m = \alpha^m [1 + \alpha + \dots + \alpha^{n-1+m}] \le \frac{\alpha^m}{1-\alpha} \to 0$ as $m \to \infty$.

Thus (x_n) satisfies the Cauchy criterion.

- 5. Use Problem 4.
- 6. Since $1 \le x_n \le 2$, $\frac{x_{n+1}}{x_n} \ge \frac{1}{2}$. Observe that $x_{n+1}^2 x_n^2 = x_n x_{n-1} x_n^2 = x_n (x_{n-1} x_n)$. Therefore $|x_{n+1} x_n| = |\frac{x_n}{x_{n+1} + x_n}||x_{n-1} x_n| \le \frac{2}{3}|x_n x_{n-1}|$.
- 7. Suppose $|x_n| \to \infty$. If (x_{n_k}) is a subsequence of (x_n) , then observe that $|x_{n_k}| \to \infty$. If $|x_n| \to \infty$, then there exists a bounded subsequence of (x_n) . Apply Bolzano-Weierstrass theorem.
- 8. Suppose $x_n \nrightarrow x_0$. Then there exists $\epsilon_0 > 0$ and a subsequence (x_{n_k}) of (x_n) such that $|x_{n_k} x_0| \ge \epsilon_0$ for all n_k . Note that (x_{n_k}) has no subsequence converging to x_0 .
- 9. (a) If (x_n) has infinitely many peaks, $n_1 < n_2 < ... < n_j < ...$ Then the subsequence (x_{n_j}) is decreasing.
 - (b) Suppose there are only finite peaks and let N be the last peak. Since $n_1 = N + 1$ is not a peak, there exists $n_2 > n_1$ such that $x_{n_2} \ge x_{n_1}$. Again $n_2 > N$ is not a peak, there exists $n_3 > n_2$ such that $x_{n_3} \ge x_{n_2}$. Continuing this process we find an increasing sequence (x_{n_k}) .