
Practice Problems 3 : Cauchy criterion, Subsequence

1. Show that the sequence (xn) defined below satisfies the Cauchy criterion.

(a) x1 = 1 and xn+1 = 1 + 1
xn

for all n ≥ 1

(b) x1 = 1 and xn+1 = 1
2+x2n

for all n ≥ 1.

(c) x1 = 1 and xn+1 = 1
6
(x2n + 8) for all n ≥ 1.

2. Let (xn) be a sequence of positive real numbers. Prove or disprove the following
statements.

(a) If xn+1 − xn → 0 then (xn) converges.

(b) If |xn+2 − xn+1| < |xn+1 − xn| for all n ∈ N then (xn) converges.

(c) If (xn) satisfies the Cauchy criterion, then there exists an α ∈ R such that
0 < α < 1 and |xn+1 − xn| ≤ α|xn − xn−1| for all n ∈ N.

3. Let (xn) be a sequence of integers such that xn+1 6= xn for all n ∈ N. Prove or
disprove the following statements.

(a) The sequence (xn) does not satisfy the Cauchy criterion.

(b) The sequence (xn) cannot have a convergent subsequence.

4. Suppose that 0 < α < 1 and that (xn) is a sequence satisfying the condition:
|xn+1 − xn| ≤ αn, n = 1, 2, 3, . . . . Show that (xn) satisfies the Cauchy criterion.

5. Let (xn) be defined by: x1 = 1
1!
, x2 = 1

1!
− 1

2!
, ..., xn = 1

1!
− 1

2!
+ ... + (−1)n+1

n!
. Show

that the sequence converges.

6. Let 1 ≤ x1 ≤ x2 ≤ 2 and xn+2 =
√
xn+1xn, n ∈ N. Show that xn+1

xn
≥ 1

2
for all

n ∈ N, |xn+1 − xn| ≤ 2
3
|xn − xn−1| for all n ∈ N and (xn) converges.

7. (*) Show that a sequence (xn) of real numbers has no convergent subsequence if
and only if |xn| → ∞.

8. (*) Let (xn) be a sequence in R and x0 ∈ R. Suppose that every subsequence of
(xn) has a convergent subsequence converging to x0. Show that xn → x0.

9. (*) Let (xn) be a sequence in R. We say that a positive integer n is a peak of the
sequence if m > n implies xn > xm (i.e., if xn is greater than every subsequent term
in the sequence).

(a) If (xn) has infinitely many peaks, show that it has a decreasing subsequence.

(b) If (xn) has only finitely many peaks, show that it has an increasing subsequence.

(c) From (a) and (b) conclude that every sequence in R has a monotone subse-
quence. Further, every bounded sequence in R has a convergent subsequence
(An alternate proof of Bolzano-Weierstrass Theorem).



Hints/Solutions

1. (a) Note that |xn+1−xn| = | 1xn−
1

xn−1
| = |xn−1−xn

xnxn−1
| and |xnxn−1| = |(1+ 1

xn−1
)xn−1| =

|xn−1 + 1| ≥ 2. This implies that |xn+1 − xn| ≤ 1
2
|xn − xn−1|. Hence (xn) satisfies

the contractive condition and therefore it satisfies the Cauchy criterion.

(b) Observe that |xn+1 − xn| =
|x2n−x2n−1|

(2+x2n)(2+x
2
n−1)
≤ |xn−xn−1||xn+xn−1|

4
≤ 2

4
|xn − xn−1|.

(c) We have |xn+1 − xn| ≤ |xn−xn−1||xn+xn−1|
6

≤ 4
6
|xn − xn−1|.

2. (a) False. Choose xn =
√
n and observe that xn+1 − xn = 1√

n+1+
√
n
→ 0.

(b) False. For xn =
√
n, |xn+2−xn+1| = |

√
n+ 2−

√
n+ 1| < 1√

n+1+
√
n

= |xn+1−xn|.

(c) False. Take xn = 1
n
. If | 1

n+1
− 1

n
| ≤ α| 1

n
− 1

n−1 | for some α > 0, show that α ≥ 1.

3. (a) True. Because |xn+1 − xn|9 0 as n→∞.

(b) False. Consider xn = (−1)n.

4. Let n > m. Then |xn − xm| ≤ |xn − xn−1|+ |xn−1 − xn−2|+ · · ·+ |xm+1 − xm|
≤ αn−1 + αn−2 + · · · + αm = αm[1 + α + · · · + αn−1+m]≤ αm

1−α → 0 as
m→∞.

Thus (xn) satisfies the Cauchy criterion.

5. Use Problem 4.

6. Since 1 ≤ xn ≤ 2, xn+1

xn
≥ 1

2
. Observe that x2n+1−x2n = xnxn−1−x2n = xn(xn−1−xn).

Therefore |xn+1 − xn| = | xn
xn+1+xn

||xn−1 − xn| ≤ 2
3
|xn − xn−1|.

7. Suppose |xn| → ∞. If (xnk
) is a subsequence of (xn), then observe that |xnk

| → ∞.
If |xn| 9 ∞, then there exists a bounded subsequence of (xn). Apply Bolzano-
Weierstrass theorem.

8. Suppose xn 9 x0. Then there exists ε0 > 0 and a subsequence (xnk
) of (xn) such

that |xnk
− x0| ≥ ε0 for all nk. Note that (xnk

) has no subsequence converging to
x0.

9. (a) If (xn) has infinitely many peaks, n1 < n2 < ... < nj < .... Then the subsequence
(xnj

) is decreasing.

(b) Suppose there are only finite peaks and let N be the last peak. Since n1 = N+1
is not a peak, there exists n2 > n1 such that xn2 ≥ xn1 . Again n2 > N is not a
peak, there exists n3 > n2 such that xn3 ≥ xn2 . Continuing this process we find an
increasing sequence (xnk

).


