1. Let $D \subset \mathbb{R}^{2}$ and $\left(x_{0}, y_{0}\right)$ be an interior point of D. Suppose that $f: D \rightarrow \mathbb{R}$ and f has a local maximum or minimum at $\left(x_{0}, y_{0}\right)$.
(a) If $(u, v) \in \mathbb{R}^{2},\|(u, v)\|=1$ and $D_{\left(x_{0}, y_{0}\right)} f(u, v)$ exists, show that $D_{\left(x_{0}, y_{0}\right)} f(u, v)=0$.
(b) If f is differentiable at $\left(x_{0}, y_{0}\right)$, show that $f^{\prime}\left(x_{0}, y_{0}\right)=0$.
2. Let $f(x, y)=5 y^{4}-6 x y^{2}+x^{2}$ for all $(x, y) \in \mathbb{R}^{2}$. Show that
(a) f has a local minimum at $(0,0)$ along every line through $(0,0)$.
(b) $D_{(0,0)} f(u, v)=0$ for every $(u, v) \in \mathbb{R}^{2}$ satisfying $\|(u, v)\|=1$.
(c) $f^{\prime}(0,0)=0$.
(d) f does not have a local minimum at $(0,0)$.
3. Examine the following functions for local maxima, local minima and saddle points.
(a) $x^{2}-y^{2}$
(b) $x^{4}+y^{4}-2 x^{2}-2 y^{2}+4 x y$
(c) $x^{2}-2 x y^{2}$
4. Consider the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ given by $f(x, y)=x y e^{-\left(x^{2}+y^{2}\right)}$ for all $(x, y) \in \mathbb{R}^{2}$.
(a) Identify the points of local maxima and minima, and the saddle points.
(b) Show that f is bounded on \mathbb{R}^{2}.
(c) Show that the points of local maxima/minima are the points of absolute maxima/minima.
5. Show that $\int_{0}^{1}\left(\sqrt{x}-\frac{4}{15}-\frac{4}{5} x\right)^{2} d x=\inf \left\{\int_{0}^{1}(\sqrt{x}-a-b x)^{2} d x: a, b \in \mathbb{R}\right\}$ (The linear function $\mathrm{y}=\frac{4}{15}+\frac{4}{5} x$ is called a "least square approximation" to $y=\sqrt{x}$ in the interval $[0,1]$).
6. Find a point on the surface $z=x y+1$ which is nearest to $(0,0,0)$.
7. Let $D=\left\{(x, y) \in \mathbb{R}^{2}: x>0\right.$ and $\left.y>0\right\}$ and $f: D \rightarrow \mathbb{R}$ be given by $f(x, y)=$ $x y+\frac{1000}{x}+\frac{1000}{y}$. Find the infimum of the function $f(x, y)$ on D.
8. If we want to make a rectangular box, open at the top, with volume 500 cubic cms using least amount of material, what should be the dimensions of the box ?
9. Let $D=\left\{(x, y) \in \mathbb{R}^{2}: x \geq 0\right.$ and $\left.y \geq 0\right\}$ and $f: D \rightarrow \mathbb{R}$ be given by $f(x, y)=$ $\left(x^{2}+y^{2}\right) e^{-(x+y)}$. Show that
(a) f is bounded on D.
(b) f achieves its (absolute) maximum at a point on the boundary of D.
(c) $e^{x+y-2} \geq \frac{x^{2}+y^{2}}{4}$ for all $(x, y) \in D$.
10. Find the points of absolute maximum and absolute minimum of the function $f(x, y)=$ $x^{2}+y^{2}-2 x+2$ on the region $\left\{(x, y): x^{2}+y^{2} \leq 4\right.$ with $\left.y \geq 0\right\}$.
11. Let $D=\left\{(x, y, z) \in \mathbb{R}^{3}: x \geq 0, y \geq 0, z \geq 0\right.$ and $\left.x+y+z=100\right\}$ and $f: D \rightarrow \mathbb{R}$ be defined by $f(x, y, z)=x y z$. Find the absolute maximum value of f on D.
12. (a) By Problem 5 of PP 28, $D_{\left(x_{0}, y_{0}\right)} f(u, v)$ is the derivative of $f\left(x_{0}+t u, y_{0}+t v\right)$ with respect to t at 0 . Since the function $f\left(x_{0}+t u, y_{0}+t v\right)$ has a minimum at $t=0$, $D_{\left(x_{0}, y_{0}\right)} f(u, v)=0$.
(b) Since $f_{x}\left(x_{0}, y_{0}\right)=f_{y}\left(x_{0}, y_{0}\right)=0, f^{\prime}\left(x_{0}, y_{0}\right)=0$.
13. (a) For a fixed $m \in \mathbb{R}$, consider the line $y=m x$. Then on the line, $f(x, y)=f(x, m x)$ which is a function of one variable. Verify that the function $f(x, m x)$ has a local minimum at $x=0$.
(b) Follows from Problem 1.
(c) Follows from Problem 1.
(d) For $\epsilon>0, f(0, \epsilon)=5 \epsilon^{4}>0$ and $f\left(2 \epsilon^{2}, \epsilon\right)<0$.
14. (a) Let $f(x, y)=x^{2}-y^{2}$. Note that $f_{x}(x, y)=f_{y}(x, y)=0$ if and only if $(x, y)=(0,0)$. Therefore $(0,0)$ is the only critical point for f. Since $\left(f_{x x} f_{y y}-f_{x y}^{2}\right)(0,0)<0$, the point $(0,0)$ is a saddle point. The function f has neither a point of local maximum nor a point of local minimum.
(b) Let $f(x, y)=x^{4}+y^{4}-2 x^{2}-2 y^{2}+4 x y$. By solving $f_{x}(x, y)=f_{y}(x, y)=0$, we get the critical points $(0,0),(-\sqrt{2}, \sqrt{2})$ and $(\sqrt{2},-\sqrt{2})$. By the second derivative test both $(-\sqrt{2}, \sqrt{2})$ and $(\sqrt{2},-\sqrt{2})$ are relative minima and the test fails for the critical point $(0,0)$. Along $y=0, f(x, y)=x^{4}-2 x^{2}$ and therefore for sufficiently small $x \neq 0$, $f(x, 0)<0$. Along $y=x, f(x, y)=2 x^{4}$ and hence $f(x, x)>0$ for $x \neq 0$. Therefore $(0,0)$ is a saddle point.
(c) Let $f(x, y)=x^{2}-2 x y^{2}$. Observe that $(0,0)$ is the only critical point and it is a saddle point of f. Because, for $\epsilon>0, f(\epsilon, 0)>0$ and $f\left(\epsilon^{2}, \epsilon\right)<0$.
15. (a) Solving $f_{x}=f_{y}=0$ implies that $y\left(1-2 x^{2}\right)=0$ and $x\left(1-2 y^{2}\right)=0$. So we get the critical points: $(0,0),\left(-\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right),\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right),\left(\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)$ and $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$. Using the second derivative test we identify that $(0,0)$ is a saddle point; $\left(-\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)$ and $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ are the points of local maxima and $\left(\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)$ and $\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ are the points of local minima.
(b) Observe that $|f(x, y)| \leq\|(x, y)\| e^{-\|(x, y)\|^{2}} \rightarrow 0$ as $\|(x, y)\| \rightarrow \infty$. This shows that there exists $R>0$ such that $f\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)=-\frac{1}{2 e}<f(x, y)<\frac{1}{2 e}=f\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ for all (x, y) such that $\|(x, y)\| \geq R$. Since f is a continuous function, it is bounded on the disc $\left\{(x, y) \in \mathbb{R}^{2}:\|(x, y)\| \leq R\right\}$. Therefore f is bounded on \mathbb{R}^{2}.
(c) Since $f(x, y)$ is a continuous function, it attains its supremum and infimum on the closed and bounded disc $\left\{(x, y) \in \mathbb{R}^{2}:\|(x, y)\| \leq R\right\}$. Therefore $\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ is a point of minimum and $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ is a point of maximum of f.
16. Let $f(a, b)=\int_{0}^{1}(\sqrt{x}-a-b x)^{2} d x=a^{2}-\frac{4 a}{3}+a b-\frac{4 b}{5}+\frac{b^{2}}{3}+\frac{1}{2}$. By solving $f_{a}=f_{b}=0$, we get $a=\frac{4}{15}$ and $b=\frac{4}{5}$. We conclude from the second derivative test that $\left(\frac{4}{15}, \frac{4}{5}\right)$ is the point of minimum for f.
17. The given problem is to minimize the function $x^{2}+y^{2}+z^{2}$ subject to $z=x y+1$. If we consider x and y are independent variables and $z=x y+1$, the problem is reduced to minimizing the function $f(x, y)=x^{2}+y^{2}+(x y+1)^{2}$. By the first and second derivative tests, $(0,0)$ is a point of local minimum of f. The corresponding point on the surface is $(0,0,1)$. Since the nearest point to $(0,0,0)$ from the surface exists, $(0,0,1)$ has to be the nearest point.
18. Solving $f_{x}=f_{y}=0$ on D implies that $(10,10)$ is the only critical point in D. By the second derivative test, $(10,10)$ is a point of local minimum of f on D. If we can justify that this is a point of (absolute) minimum of f on D, then $f(10,10)=300$ is the infimum of f. For justification, consider the subset R of D given by $R=\{(x, y): 1 \leq x \leq 400,1 \leq y \leq 400\}$. Observe that if $(x, y) \in D \backslash R$, then $f(x, y)>300$. Since the minimum of the continuous function f on the closed bounded set R is achieved, $(10,10)$ is the (absolute) minimum of f on R. From the above observation it follows that $(10,10)$ is the absolute minimum of f on D.
19. If we let x, y and z be the length, width and height of the box respectively, then we want to minimize $x y+2 x z+2 y z$ subject to the constraint $x y z=500$. Since $x y>0$ and $z=\frac{500}{x y}$, we minimize the function $f(x, y)=x y+\frac{1000}{y}+\frac{1000}{x}$ over the set $\left\{(x, y) \in \mathbb{R}^{2}: x>0\right.$ and $\left.y>0\right\}$. The rest follows from Problem 7. The required length, width and height of the box are 10,10 and 5 cms respectively.
20. The solution to this problem is similar to the solution to Problem 4.
(a) Since for $x, y>0,\left(x^{2}+y^{2}\right) e^{-(x+y)} \leq(x+y)^{2} e^{-(x+y)} \rightarrow 0$ as $\|(x, y)\| \rightarrow \infty$ the function is bounded.
(b) Solving $f_{x}=f_{y}=0$ on D implies that $(1,1)$ is the only critical point in the interior of D. On the boundary $\{(x, 0): x>0\}$, the function is $x^{2} e^{-x}$ which attains its local maximum at $x=2$. Similarly on the boundary $\{(0, y): y>0\}$, the function is $y^{2} e^{-y}$ which attains its local maximum at $y=2$. From the proof of (a) and comparing the values of $f(1,1), f(0,0), f(2,0)$ and $f(0,2)$, we see that $(0,2)$ and $(2,0)$ are the points of maxima for f on D.
(c) By (a), $4 e^{-2} \geq\left(x^{2}+y^{2}\right) e^{-(x+y)}$.
21. By solving $f_{x}=0$ and $f_{y}=0$, we see that there is no critical point in the interior of the region. On the curve $x^{2}+y^{2}=4, y \geq 0$, the function is $x^{2}+4-x^{2}-2 x+2=-2 x+6$ where $x \in[-2,2]$. For this function there is no critical point in the interval $(-2,2)$ and therefore the candidates for the points of maxima/minima for f on the curve are $(-2,0)$ and $(2,0)$. On the line segment joining $(-2,0)$ and $(2,0)$, the function is $x^{2}-2 x+2$ where $x \in[-2,2]$. The critical point for this function in the interior of $[-2,2]$ is $x=1$ and therefore the point $(1,0)$ is also a candidate. Since $f(-2,0)=10, f(2,0)=2$ and $f(1,0)=1$, the point of maximum is $(-2,0)$ and the point of minimum is $(1,0)$.
This problem can alternately be solved as follows. Note that the points of minima and maxima for $f(x, y)$ and the function $g(x, y)=(x-1)^{2}+y^{2}$ are same. Since the value $(x-1)^{2}+y^{2}$ is the distance between (x, y) and the point $(1,0)$, the point of maximum is $(-2,0)$ and the point of minimum is $(1,0)$.
22. First note that D is a bounded subset of the pane $x+y+z=100$. Since f is a continuous function on the bounded set D, a point of absolute maximum for f on D exists. Moreover, since the value of f on the boundary of D is zero, f attains its maximum in the interior of D. In the interior of $D, f(x, y, z)=x y z$ and $z=100-x-y$. So we maximize the function $g(x, y)=x y(100-x-y)$ on $\{(x, y): x>0$ and $y>0\}$. From the first and second derivative tests we get the equations $x+2 y=100$ and $y+2 x=100$. This implies that g attains its local maximum at $\left(\frac{100}{3}, \frac{100}{3}\right)$. Therefore, $\left(\frac{100}{3}, \frac{100}{3}, \frac{100}{3}\right)$ is a point of local maximum for f in the interior of D. Since f attains its absolute maximum in the interior, $\left(\frac{100}{3}, \frac{100}{3}, \frac{100}{3}\right)$ is the point of absolute maximum on D.

Let I be in interval in Rhaving more than one point, and let $f: I \rightarrow \mathcal{R}$ be differentiable. We know that f is increasing on I if and only if $f^{\prime} \geq 0$ on I , and f is convex on I if and only if f^{\prime} is
increasing on I. Similarly, it will be nice to identify a 'geometric' property P of the function f so that f satisfies P on I if and only if f ' is convex on I.

Let $I=(0, \infty), a \in \mathcal{R}$ and $f(x)=x^{a}$ for $x \in I$. One may observe that f^{\prime} is convex on I if and only if $0 \leq a \leq 1$ or $a \geq 2$. This example shows that the property P has to be rather subtle!

