
PP 30 : Maxima, Minima, Second Derivative Test

1. Let D ⊂ R2 and (x0, y0) be an interior point of D. Suppose that f : D → R and f has a
local maximum or minimum at (x0, y0).

(a) If (u, v) ∈ R2, ‖(u, v)‖ = 1 and D(x0,y0)f(u, v) exists, show that D(x0,y0)f(u, v) = 0.

(b) If f is differentiable at (x0, y0), show that f ′(x0, y0) = 0.

2. Let f(x, y) = 5y4 − 6xy2 + x2 for all (x, y) ∈ R2. Show that

(a) f has a local minimum at (0,0) along every line through (0, 0).

(b) D(0,0)f(u, v) = 0 for every (u, v) ∈ R2 satisfying ‖(u, v)‖ = 1.

(c) f ′(0, 0) = 0.

(d) f does not have a local minimum at (0, 0).

3. Examine the following functions for local maxima, local minima and saddle points.

(a) x2 − y2

(b) x4 + y4 − 2x2 − 2y2 + 4xy

(c) x2 − 2xy2

4. Consider the function f : R2 → R given by f(x, y) = xye−(x
2+y2) for all (x, y) ∈ R2.

(a) Identify the points of local maxima and minima, and the saddle points.

(b) Show that f is bounded on R2.

(c) Show that the points of local maxima/minima are the points of absolute maxima/minima.

5. Show that
∫ 1
0 (
√
x− 4

15 −
4
5x)2dx = inf{

∫ 1
0 (
√
x−a− bx)2dx : a, b ∈ R} (The linear function

y = 4
15 + 4

5x is called a “least square approximation” to y =
√
x in the interval [0, 1]).

6. Find a point on the surface z = xy + 1 which is nearest to (0, 0, 0).

7. Let D = {(x, y) ∈ R2 : x > 0 and y > 0} and f : D → R be given by f(x, y) =
xy + 1000

x + 1000
y . Find the infimum of the function f(x, y) on D.

8. If we want to make a rectangular box, open at the top, with volume 500 cubic cms using
least amount of material, what should be the dimensions of the box ?

9. Let D = {(x, y) ∈ R2 : x ≥ 0 and y ≥ 0} and f : D → R be given by f(x, y) =
(x2 + y2)e−(x+y). Show that

(a) f is bounded on D.

(b) f achieves its (absolute) maximum at a point on the boundary of D.

(c) ex+y−2 ≥ x2+y2

4 for all (x, y) ∈ D.

10. Find the points of absolute maximum and absolute minimum of the function f(x, y) =
x2 + y2 − 2x+ 2 on the region {(x, y) : x2 + y2 ≤ 4 with y ≥ 0}.

11. Let D = {(x, y, z) ∈ R3 : x ≥ 0, y ≥ 0, z ≥ 0 and x + y + z = 100} and f : D → R be
defined by f(x, y, z) = xyz. Find the absolute maximum value of f on D.



Practice Problems 30: Hints/Solutions

1. (a) By Problem 5 of PP 28, D(x0,y0)f(u, v) is the derivative of f(x0 + tu, y0 + tv) with
respect to t at 0. Since the function f(x0 + tu, y0 + tv) has a minimum at t = 0,
D(x0,y0)f(u, v) = 0.

(b) Since fx(x0, y0) = fy(x0, y0) = 0, f ′(x0, y0) = 0.

2. (a) For a fixed m ∈ R, consider the line y = mx. Then on the line, f(x, y) = f(x,mx)
which is a function of one variable. Verify that the function f(x,mx) has a local
minimum at x = 0.

(b) Follows from Problem 1.

(c) Follows from Problem 1.

(d) For ε > 0, f(0, ε) = 5ε4 > 0 and f(2ε2, ε) < 0.

3. (a) Let f(x, y) = x2 − y2. Note that fx(x, y) = fy(x, y) = 0 if and only if (x, y) = (0, 0).
Therefore (0, 0) is the only critical point for f . Since (fxxfyy − f2xy)(0, 0) < 0, the
point (0, 0) is a saddle point. The function f has neither a point of local maximum
nor a point of local minimum.

(b) Let f(x, y) = x4 +y4−2x2−2y2 +4xy. By solving fx(x, y) = fy(x, y) = 0, we get the
critical points (0, 0), (−

√
2,
√

2) and (
√

2,−
√

2). By the second derivative test both
(−
√

2,
√

2) and (
√

2,−
√

2) are relative minima and the test fails for the critical point
(0, 0). Along y = 0, f(x, y) = x4 − 2x2 and therefore for sufficiently small x 6= 0,
f(x, 0) < 0. Along y = x, f(x, y) = 2x4 and hence f(x, x) > 0 for x 6= 0. Therefore
(0, 0) is a saddle point.

(c) Let f(x, y) = x2−2xy2. Observe that (0, 0) is the only critical point and it is a saddle
point of f . Because, for ε > 0, f(ε, 0) > 0 and f(ε2, ε) < 0.

4. (a) Solving fx = fy = 0 implies that y(1 − 2x2) = 0 and x(1 − 2y2) = 0. So we get
the critical points: (0, 0), (− 1√

2
,− 1√

2
), (− 1√

2
, 1√

2
), ( 1√

2
,− 1√

2
) and ( 1√

2
, 1√

2
). Using

the second derivative test we identify that (0, 0) is a saddle point; (− 1√
2
,− 1√

2
) and

( 1√
2
, 1√

2
) are the points of local maxima and ( 1√

2
,− 1√

2
) and (− 1√

2
, 1√

2
) are the points

of local minima.

(b) Observe that |f(x, y)| ≤ ‖(x, y)‖e−‖(x,y)‖2 → 0 as ‖(x, y)‖ → ∞. This shows that
there exists R > 0 such that f(− 1√

2
, 1√

2
) = − 1

2e < f(x, y) < 1
2e = f( 1√

2
, 1√

2
) for all

(x, y) such that ‖(x, y)‖ ≥ R. Since f is a continuous function, it is bounded on the
disc {(x, y) ∈ R2 : ‖(x, y)‖ ≤ R}. Therefore f is bounded on R2.

(c) Since f(x, y) is a continuous function, it attains its supremum and infimum on the
closed and bounded disc {(x, y) ∈ R2 : ‖(x, y)‖ ≤ R}. Therefore (− 1√

2
, 1√

2
) is a point

of minimum and ( 1√
2
, 1√

2
) is a point of maximum of f .

5. Let f(a, b) =
∫ 1
0 (
√
x − a − bx)2dx = a2 − 4a

3 + ab − 4b
5 + b2

3 + 1
2 . By solving fa = fb = 0,

we get a = 4
15 and b = 4

5 . We conclude from the second derivative test that ( 4
15 ,

4
5) is the

point of minimum for f .

6. The given problem is to minimize the function x2 + y2 + z2 subject to z = xy + 1. If we
consider x and y are independent variables and z = xy + 1, the problem is reduced to
minimizing the function f(x, y) = x2 + y2 + (xy + 1)2. By the first and second derivative
tests, (0, 0) is a point of local minimum of f . The corresponding point on the surface is
(0, 0, 1). Since the nearest point to (0, 0, 0) from the surface exists, (0, 0, 1) has to be the
nearest point.



7. Solving fx = fy = 0 on D implies that (10, 10) is the only critical point in D. By the second
derivative test, (10, 10) is a point of local minimum of f on D. If we can justify that this
is a point of (absolute) minimum of f on D, then f(10, 10) = 300 is the infimum of f . For
justification, consider the subset R of D given by R = {(x, y) : 1 ≤ x ≤ 400, 1 ≤ y ≤ 400}.
Observe that if (x, y) ∈ D \ R, then f(x, y) > 300. Since the minimum of the continuous
function f on the closed bounded set R is achieved, (10, 10) is the (absolute) minimum of
f on R. From the above observation it follows that (10, 10) is the absolute minimum of f
on D.

8. If we let x, y and z be the length, width and height of the box respectively, then we want to
minimize xy+2xz+2yz subject to the constraint xyz = 500. Since xy > 0 and z = 500

xy , we

minimize the function f(x, y) = xy+ 1000
y + 1000

x over the set {(x, y) ∈ R2 : x > 0 and y > 0}.
The rest follows from Problem 7. The required length, width and height of the box are
10, 10 and 5 cms respectively.

9. The solution to this problem is similar to the solution to Problem 4.

(a) Since for x, y > 0, (x2 + y2)e−(x+y) ≤ (x + y)2e−(x+y) → 0 as ‖(x, y)‖ → ∞ the
function is bounded.

(b) Solving fx = fy = 0 on D implies that (1, 1) is the only critical point in the interior
of D. On the boundary {(x, 0) : x > 0}, the function is x2e−x which attains its local
maximum at x = 2. Similarly on the boundary {(0, y) : y > 0}, the function is y2e−y

which attains its local maximum at y = 2. From the proof of (a) and comparing the
values of f(1, 1), f(0, 0), f(2, 0) and f(0, 2), we see that (0, 2) and (2, 0) are the points
of maxima for f on D.

(c) By (a), 4e−2 ≥ (x2 + y2)e−(x+y).

10. By solving fx = 0 and fy = 0, we see that there is no critical point in the interior of the
region. On the curve x2 + y2 = 4, y ≥ 0, the function is x2 + 4 − x2 − 2x + 2 = −2x + 6
where x ∈ [−2, 2]. For this function there is no critical point in the interval (−2, 2) and
therefore the candidates for the points of maxima/minima for f on the curve are (−2, 0)
and (2, 0). On the line segment joining (−2, 0) and (2, 0), the function is x2 − 2x + 2
where x ∈ [−2, 2]. The critical point for this function in the interior of [−2, 2] is x = 1
and therefore the point (1, 0) is also a candidate. Since f(−2, 0) = 10, f(2, 0) = 2 and
f(1, 0) = 1, the point of maximum is (−2, 0) and the point of minimum is (1, 0).

This problem can alternately be solved as follows. Note that the points of minima and
maxima for f(x, y) and the function g(x, y) = (x − 1)2 + y2 are same. Since the value
(x− 1)2 + y2 is the distance between (x, y) and the point (1, 0), the point of maximum is
(−2, 0) and the point of minimum is (1, 0).

11. First note that D is a bounded subset of the pane x+ y+ z = 100. Since f is a continuous
function on the bounded set D, a point of absolute maximum for f on D exists. Moreover,
since the value of f on the boundary of D is zero, f attains its maximum in the interior
of D. In the interior of D, f(x, y, z) = xyz and z = 100 − x − y. So we maximize the
function g(x, y) = xy(100 − x − y) on {(x, y) : x > 0 and y > 0}. From the first and
second derivative tests we get the equations x+ 2y = 100 and y + 2x = 100. This implies
that g attains its local maximum at (1003 ,

100
3 ). Therefore, (1003 ,

100
3 ,

100
3 ) is a point of local

maximum for f in the interior of D. Since f attains its absolute maximum in the interior,
(1003 ,

100
3 ,

100
3 ) is the point of absolute maximum on D.

Let I be in interval in Rhaving more than one point, and let f : I → R be differentiable. We
know that f is increasing on I if and only if f ′ ≥ 0 on I, and f is convex on I if and only if f’ is



increasing on I. Similarly, it will be nice to identify a ‘geometric’ property P of the function f so
that f satisfies P on I if and only if f’ is convex on I.

Let I = (0,∞), a ∈ R and f(x) = xa for x ∈ I. One may observe that f’ is convex on I if
and only if 0 ≤ a ≤ 1 or a ≥ 2. This example shows that the property P has to be rather subtle!


