
PP 33 : Change of variables in double integrals, Polar coordinates

1. Consider the transformation T : [0, 2π]× [0, 1]→ R2 given by T (u, v) = (2v cosu, v sinu).

(a) For a fixed v0 ∈ [0, 1], describe the set {T (u, v0) : u ∈ [0, 2π]}.
(b) Describe the set {T (u, v) : (u, v) ∈ [0, 2π]× [0, 1]}.

2. Let R be the region in R2 bounded by the straight lines y = x, y = 3x and x + y = 4.
Consider the transformation T : R2 → R2 defined by T (u, v) = (u− v, u+ v). Find the set
S ⊂ R2 satisfying T (S) = R.

3. Let R be the region in R2 bounded by the curve defined in the polar co-ordinates r = 1−
cos θ, 0 ≤ θ ≤ π and the x-axis. Consider the transformation T : [0, π]× [0, 1]→ R2 defined
by T (r, θ) = (r cos θ, r sin θ). Let S be the subset of [0, π] × [0, 1] satisfying T (S) = R.
Sketch the regions S and R.

4. Using the change of variables u = x + y and v = x − y, show that
1∫
0

x∫
0

(x − y)dydx =

1∫
0

2−v∫
v

v
2dudv.

5. Let R be the region bounded by x = 0, x = 1, y = x and y = x+1. Show that
∫∫
R

dxdy√
xy−x2

=(
1∫
0

du√
u

)(
1∫
0

dv√
v

)
.

6. Show that
1∫
0

1−x∫
0

e
x−y
x+y dxdy = 1

2

∫ 1
0

∫ v
−v e

u
v dudv = 1

2 sinh(1).

7. Find the region R in R2 satisfying
1∫
1√
2

x∫
√
1−x2

xydydx +

√
2∫

1

x∫
0

xydydx +
2∫
√
2

√
4−x2∫
0

xydydx =∫∫
R

xydxdy. Evaluate
∫∫
R

xydxdy.

8. Convert
1∫
0

x∫
x2
dydx in to an iterated integral involving polar coordinates.

9. Evaluate

(a)
1∫
0

1−y∫
0

√
x+ y(y − 2x)2dxdy.

(b)

1√
2∫

0

√
1−y2∫
y

(x+ y)dxdy.

(c)
2∫
1

y∫
0

1

(x2+y2)
3
2
dxdy.

(d)
2∫
0

√
2x−x2∫
0

√
x2 + y2dydx.

10. Let R = {(x, y) ∈ R2 : 9x2 + 4y2 ≤ 1}. Evaluate
∫∫
R

cos(9x2 + 4y2)dxdy.

11. Find the volume of the solid bounded by the surfaces z = 3(x2 +y2) and z = 4− (x2 +y2).



12. Find the volume of the solid in the first octant bounded below by the surface z =
√
x2 + y2

and above by x2 + y2 + z2 = 8 as well as the planes y = 0 and y = x.

Practice Problems 33: Hints/Solutions

1. (a) If x = 2v0 cosu and y = v0 sinu then x2

4 + y2

1 = v20. The set {T (u, v0) : u ∈ [0, 2π]} is
an ellipse.

(b) The set is the region enclosed by the ellipse x2

4 + y2

1 = 1.

2. If x = u− v and y = u+ v then y = x⇒ v = 0, y = 3x⇒ v = u
2 and x+ y = 4⇒ u = 2.

The region S is bounded by the lines v = 0, v = u
2 and u = 2 in the uv-plane. See Figure

1.

3. See Figure 2.

4. Note that
1∫
0

x∫
0

(x− y)dydx =
∫∫
R

(y− x)dxdy where R is the region in xy-plane bounded by

the lines y = x, x = 1 and y = 0. Since x = 1
2(u + v) and y = 1

2(u − v), y = 0 ⇒ u = v,

x = 1⇒ u+ v = 2 and x = y ⇒ v = 0. Therefore
∫∫
R

(y − x)dxdy =
∫∫
S

v ∂(x,y)∂(u,v)dudv where

S is the region in the uv-plane bounded by the lines u = v, v + v = 2 and v = 0.

5. Take u = x and v = y − x. Then y = x ⇒ v = 0 and y = x + 1 ⇒ v = 1. Therefore∫∫
R

dxdy√
xy−x2

=
∫∫
S

1√
uv

∂(x,y)
∂(u,v)dudv where S is the region in the uv-plane bounded by the lines

u = 0, u = 1, v = 0 and v = 1.

6. Consider u = x− y and v = x+ y. Then
1∫
0

1−x∫
0

e
x−y
x+y dxdy =

∫∫
S

e
u
v
∂(x,y)
∂(u,v)dudv where S is the

region in the uv−plane bounded by the lines u = −v, u = v and v = 1.

7. See Figure 3. By polar coordinates,
∫∫
D xydxdy =

π
4∫
0

2∫
1

r3 cos θ sin θdrdθ = 15
4

π
4∫
0

sin θ cos θdθ.

8. The integral becomes
∫∫
D

dxdy where D is the region in the first quadrant in R2 bounded

by the line y = x and the curve y = x2. The equation y = x2 can be converted in polar as

r sin θ = r2 cos2 θ which implies r = tan θ sec θ. Therefore
∫∫
D

dxdy =

π
4∫
0

sec θ tan θ∫
0

rdrdθ.

9. (a) Note that
1∫
0

1−y∫
0

√
x+ y(y−2x)2dxdy =

∫∫
R

√
x+ y(y−2x)2dxdy where R is the region

bounded by the lines x = 0, y = 0 and x+ y = 1. Consider u = x+ y and v = y− 2x.
Then x = 0 ⇒ v = u, y = 0 ⇒ v = −2u and x + y = 1 ⇒ u = 1. Therefore∫∫
R

√
x+ y(y − 2x)2dxdy =

1∫
0

u∫
−2u

√
uv2 13dvdu.

(b) The given integral becomes
∫∫
R

(x + y)dxdy where R is the region bounded by the

lines y = 0, y = x and the circle x2 + y2 = 1. By polar coordinates
∫∫
R

(x+ y)dxdy =

π
4∫
0

1∫
0

(r cos θ + r sin θ)rdrdθ.



(c) See Figure 4. The given integral becomes

π
4∫
0

2 sec θ∫
sec θ

1
r3
rdrdθ.

(d) See Figure 5. The given integral becomes
∫∫
R

√
x2 + y2dxdy where R is the region

in the first quadrant bounded by the circle (x − 1)2 + y2 = 1 and the x-axis. The
points on the circle y2 = 2x − x2 is represented by r = 2 cos θ in polar coordinates.

Therefore the integral is given by

π
2∫
0

2 cos θ∫
0

rrdrdθ.

10. Take x = r
3 cos θ and y = r

2 sin θ. Then ∂(x,y)
∂(r,θ = r

6 . Therefore
∫∫
R

cos(9x2 + 4y2)dxdy =

2π∫
0

1∫
0

cos(r2) r6drdθ =
2π∫
0

1∫
0

cosudu12dθ.

11. The intersection of the surfaces is the set {(x, y, 3) : x2 + y2 = 1}. Therefore the volume
is given by

∫∫
R

(4− x2 − y2 − 3(x2 + y2))dxdy where R is the region in R2 enclosed by the

circle x2 + y2 = 1. By polar coordinate the integral becomes
2π∫
0

1∫
0

(4− 4r2)rdrdθ.

12. The given solid lies above the region R where R is in the first quadrant in R2 bounded by
the circle x2 + y2 = 4 and the lines y = x and y = 0. Therefore the required volume is

given by
∫∫
R

(
√

8− x2 − y2 −
√
x2 + y2)dxdy =

π
4∫
0

2∫
0

(
√

8− r2 − r)rdrdθ.


