1. Consider the transformation $T:[0,2 \pi] \times[0,1] \rightarrow \mathbb{R}^{2}$ given by $T(u, v)=(2 v \cos u, v \sin u)$.
(a) For a fixed $v_{0} \in[0,1]$, describe the set $\left\{T\left(u, v_{0}\right): u \in[0,2 \pi]\right\}$.
(b) Describe the set $\{T(u, v):(u, v) \in[0,2 \pi] \times[0,1]\}$.
2. Let R be the region in \mathbb{R}^{2} bounded by the straight lines $y=x, y=3 x$ and $x+y=4$. Consider the transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by $T(u, v)=(u-v, u+v)$. Find the set $S \subset \mathbb{R}^{2}$ satisfying $T(S)=R$.
3. Let R be the region in \mathbb{R}^{2} bounded by the curve defined in the polar co-ordinates $r=1-$ $\cos \theta, 0 \leq \theta \leq \pi$ and the x-axis. Consider the transformation $T:[0, \pi] \times[0,1] \rightarrow \mathbb{R}^{2}$ defined by $T(r, \theta)=(r \cos \theta, r \sin \theta)$. Let S be the subset of $[0, \pi] \times[0,1]$ satisfying $T(S)=R$. Sketch the regions S and R.
4. Using the change of variables $u=x+y$ and $v=x-y$, show that $\int_{0}^{1} \int_{0}^{x}(x-y) d y d x=$ $\int_{0}^{1} \int_{v}^{2-v} \frac{v}{2} d u d v$.
5. Let R be the region bounded by $x=0, x=1, y=x$ and $y=x+1$. Show that $\iint_{R} \frac{d x d y}{\sqrt{x y-x^{2}}}=$ $\left(\int_{0}^{1} \frac{d u}{\sqrt{u}}\right)\left(\int_{0}^{1} \frac{d v}{\sqrt{v}}\right)$.
6. Show that $\int_{0}^{1} \int_{0}^{1-x} e^{\frac{x-y}{x+y}} d x d y=\frac{1}{2} \int_{0}^{1} \int_{-v}^{v} e^{\frac{u}{v}} d u d v=\frac{1}{2} \sinh (1)$.
7. Find the region R in \mathbb{R}^{2} satisfying $\int_{\frac{1}{\sqrt{2}}}^{1} \int_{\sqrt{1-x^{2}}}^{x} x y d y d x+\int_{1}^{\sqrt{2}} \int_{0}^{x} x y d y d x+\int_{\sqrt{2}}^{2} \int_{0}^{\sqrt{4-x^{2}}} x y d y d x=$ $\iint_{R} x y d x d y$. Evaluate $\iint_{R} x y d x d y$.
8. Convert $\int_{0}^{1} \int_{x^{2}}^{x} d y d x$ in to an iterated integral involving polar coordinates.
9. Evaluate
(a) $\int_{0}^{1} \int_{0}^{1-y} \sqrt{x+y}(y-2 x)^{2} d x d y$.
(b) $\int_{0}^{\frac{1}{\sqrt{2}}} \sqrt{1-y^{2}} \int_{y}(x+y) d x d y$.
(c) $\int_{1}^{2} \int_{0}^{y} \frac{1}{\left(x^{2}+y^{2}\right)^{\frac{3}{2}}} d x d y$.
(d) $\int_{0}^{2} \int_{0}^{\sqrt{2 x-x^{2}}} \sqrt{x^{2}+y^{2}} d y d x$.
10. Let $R=\left\{(x, y) \in \mathbb{R}^{2}: 9 x^{2}+4 y^{2} \leq 1\right\}$. Evaluate $\iint_{R} \cos \left(9 x^{2}+4 y^{2}\right) d x d y$.
11. Find the volume of the solid bounded by the surfaces $z=3\left(x^{2}+y^{2}\right)$ and $z=4-\left(x^{2}+y^{2}\right)$.
12. Find the volume of the solid in the first octant bounded below by the surface $z=\sqrt{x^{2}+y^{2}}$ and above by $x^{2}+y^{2}+z^{2}=8$ as well as the planes $y=0$ and $y=x$.

Practice Problems 33: Hints/Solutions

1. (a) If $x=2 v_{0} \cos u$ and $y=v_{0} \sin u$ then $\frac{x^{2}}{4}+\frac{y^{2}}{1}=v_{0}^{2}$. The set $\left\{T\left(u, v_{0}\right): u \in[0,2 \pi]\right\}$ is an ellipse.
(b) The set is the region enclosed by the ellipse $\frac{x^{2}}{4}+\frac{y^{2}}{1}=1$.
2. If $x=u-v$ and $y=u+v$ then $y=x \Rightarrow v=0, y=3 x \Rightarrow v=\frac{u}{2}$ and $x+y=4 \Rightarrow u=2$. The region S is bounded by the lines $v=0, v=\frac{u}{2}$ and $u=2$ in the $u v$-plane. See Figure 1.
3. See Figure 2.
4. Note that $\int_{0}^{1} \int_{0}^{x}(x-y) d y d x=\iint_{R}(y-x) d x d y$ where R is the region in $x y$-plane bounded by the lines $y=x, x=1$ and $y=0$. Since $x=\frac{1}{2}(u+v)$ and $y=\frac{1}{2}(u-v), y=0 \Rightarrow u=v$, $x=1 \Rightarrow u+v=2$ and $x=y \Rightarrow v=0$. Therefore $\iint_{R}(y-x) d x d y=\iint_{S} v \frac{\partial(x, y)}{\partial(u, v)} d u d v$ where S is the region in the $u v$-plane bounded by the lines $u=v, v+v=2$ and $v=0$.
5. Take $u=x$ and $v=y-x$. Then $y=x \Rightarrow v=0$ and $y=x+1 \Rightarrow v=1$. Therefore $\iint_{R} \frac{d x d y}{\sqrt{x y-x^{2}}}=\iint_{S} \frac{1}{\sqrt{u v}} \frac{\partial x, y)}{\partial(u, v)} d u d v$ where S is the region in the $u v$-plane bounded by the lines $u=0, u=1, v=0$ and $v=1$.
6. Consider $u=x-y$ and $v=x+y$. Then $\int_{0}^{1} \int_{0}^{1-x} e^{\frac{x-y}{x+y}} d x d y=\iint_{S} e^{\frac{u}{v}} \frac{\partial(x, y)}{\partial(u, v)} d u d v$ where S is the region in the $u v$-plane bounded by the lines $u=-v, u=v$ and $v=1$.
7. See Figure 3. By polar coordinates, $\iint_{D} x y d x d y=\int_{0}^{\frac{\pi}{4}} \int_{1}^{2} r^{3} \cos \theta \sin \theta d r d \theta=\frac{15}{4} \int_{0}^{\frac{\pi}{4}} \sin \theta \cos \theta d \theta$.
8. The integral becomes $\iint_{D} d x d y$ where D is the region in the first quadrant in \mathbb{R}^{2} bounded by the line $y=x$ and the curve $y=x^{2}$. The equation $y=x^{2}$ can be converted in polar as $r \sin \theta=r^{2} \cos ^{2} \theta$ which implies $r=\tan \theta \sec \theta$. Therefore $\iint_{D} d x d y=\int_{0}^{\frac{\pi}{4} \sec \theta} \int_{0}^{\tan \theta} r d r d \theta$.
9. (a) Note that $\int_{0}^{1} \int_{0}^{1-y} \sqrt{x+y}(y-2 x)^{2} d x d y=\iint_{R} \sqrt{x+y}(y-2 x)^{2} d x d y$ where R is the region bounded by the lines $x=0, y=0$ and $x+y=1$. Consider $u=x+y$ and $v=y-2 x$. Then $x=0 \Rightarrow v=u, y=0 \Rightarrow v=-2 u$ and $x+y=1 \Rightarrow u=1$. Therefore $\iint_{R} \sqrt{x+y}(y-2 x)^{2} d x d y=\int_{0}^{1} \int_{-2 u}^{u} \sqrt{u} v^{2} \frac{1}{3} d v d u$.
(b) The given integral becomes $\iint_{R}(x+y) d x d y$ where R is the region bounded by the lines $y=0, y=x$ and the circle $x^{2}+y^{2}=1$. By polar coordinates $\iint_{R}(x+y) d x d y=$ $\int_{0}^{\frac{\pi}{4}} \int_{0}^{1}(r \cos \theta+r \sin \theta) r d r d \theta$.
(c) See Figure 4. The given integral becomes $\int_{0}^{\frac{\pi}{4}} \int_{\sec \theta}^{2 \sec \theta} \frac{1}{r^{3}} r d r d \theta$.
(d) See Figure 5. The given integral becomes $\iint_{R} \sqrt{x^{2}+y^{2}} d x d y$ where R is the region in the first quadrant bounded by the circle $(x-1)^{2}+y^{2}=1$ and the x-axis. The points on the circle $y^{2}=2 x-x^{2}$ is represented by $r=2 \cos \theta$ in polar coordinates. Therefore the integral is given by $\int_{0}^{\frac{\pi}{2}} \int_{0}^{2 \cos \theta} r r d r d \theta$.
10. Take $x=\frac{r}{3} \cos \theta$ and $y=\frac{r}{2} \sin \theta$. Then $\frac{\partial(x, y)}{\partial(r, \theta}=\frac{r}{6}$. Therefore $\iint_{R} \cos \left(9 x^{2}+4 y^{2}\right) d x d y=$ $\int_{0}^{2 \pi} \int_{0}^{1} \cos \left(r^{2}\right) \frac{r}{6} d r d \theta=\int_{0}^{2 \pi} \int_{0}^{1} \cos u \frac{d u}{12} d \theta$.
11. The intersection of the surfaces is the set $\left\{(x, y, 3): x^{2}+y^{2}=1\right\}$. Therefore the volume is given by $\iint_{R}\left(4-x^{2}-y^{2}-3\left(x^{2}+y^{2}\right)\right) d x d y$ where R is the region in \mathbb{R}^{2} enclosed by the circle $x^{2}+y^{2}=1$. By polar coordinate the integral becomes $\int_{0}^{2 \pi} \int_{0}^{1}\left(4-4 r^{2}\right) r d r d \theta$.
12. The given solid lies above the region R where R is in the first quadrant in \mathbb{R}^{2} bounded by the circle $x^{2}+y^{2}=4$ and the lines $y=x$ and $y=0$. Therefore the required volume is given by $\iint_{R}\left(\sqrt{8-x^{2}-y^{2}}-\sqrt{x^{2}+y^{2}}\right) d x d y=\int_{0}^{\frac{\pi}{4}} \int_{0}^{2}\left(\sqrt{8-r^{2}}-r\right) r d r d \theta$.
