1. Let D denote the solid bounded by the surfaces $y=x, y=x^{2}, z=x$ and $z=0$. Evaluate $\iiint_{D} y d x d y d z$.
2. Let D denote the solid bounded below by the plane $z+y=2$, above by the cylinder $z+y^{2}=4$ and on the sides $x=0$ and $x=2$. Evaluate $\iiint_{D} x d x d y d z$.
3. Suppose $\int_{0}^{4} \int_{\sqrt{x}}^{2} \int_{0}^{2-y} d z d y d x=\iiint_{D} d x d y d z$ for some region $D \subset \mathbb{R}^{3}$.
(a) Sketch the region D.
(b) Sketch the projections of D on the $x y, y z$ and $x z$ planes.
(c) Write $\int_{0}^{4} \int_{\sqrt{x}}^{2} \int_{0}^{2-y} d z d y d x$ as iterated integrals of other orders.
4. Let $D=\left\{(x, y, z) \in \mathbb{R}^{3}: \frac{x^{2}}{4}+\frac{y^{2}}{16}+\frac{z^{2}}{9} \leq 1\right\}$ and $E=\left\{(u, v, w) \in \mathbb{R}^{3}: u^{2}+v^{2}+w^{2} \leq 1\right\}$. Show that $\iiint_{D} d x d y d z=\iiint_{E} 24 d u d v d w$.
5. In each of the following cases, describe the solid D in terms of the cylindrical coordinates.
(a) Let D be the solid that is bounded by the paraboloids $z=x^{2}+y^{2}$ and $z=36-$ $3 x^{2}-3 y^{2}$.
(b) Let D be the solid that lies within the cylinder $x^{2}+(y-1)^{2}=1$ below the paraboloid $z=x^{2}+y^{2}$ and above the plane $z=0$.
(c) Let S denote the torus generated by revolving the circle $\left\{(x, z):(x-2)^{2}+z^{2}=1\right\}$ about the z-axis. Let D be the solid that is bounded above by the surface S and below by $z=0$.
6. Let D be the solid that lies inside the cylinder $x^{2}+y^{2}=1$, below the cone $z=\sqrt{4\left(x^{2}+y^{2}\right)}$ and above the plane $z=0$. Evaluate $\iiint_{D} x^{2} d x d y d z$.
7. Evaluate $\int_{-2}^{2} \int_{-\sqrt{4-x^{2}}}^{\sqrt{4-x^{2}}} \int_{x^{2}+y^{2}}^{4} x d z d y d x$.
8. Describe the following regions in terms of the spherical coordinates.
(a) The region that lies inside the sphere $x^{2}+y^{2}+(z-2)^{2}=4$ and outside the sphere $x^{2}+y^{2}+z^{2}=1$.
(b) The region that lies below the sphere $x^{2}+y^{2}+z^{2}=z$ and above the cone $z=$ $\sqrt{x^{2}+y^{2}}$.
(c) The region that is enclosed by the cone $z=\sqrt{3\left(x^{2}+y^{2}\right)}$ and the planes $z=1$ and $z=2$.
9. Let D denote the solid bounded above by the plane $z=4$ and below by the cone $z=$ $\sqrt{x^{2}+y^{2}}$. Evaluate $\iiint_{D} \sqrt{x^{2}+y^{2}+z^{2}} d x d y d z$.
10. Let D denote the solid enclosed by the spheres $x^{2}+y^{2}+(z-1)^{2}=1$ and $x^{2}+y^{2}+z^{2}=3$. Using spherical coordinates, set up iterated integrals that gives the volume of D.
11. The projection of the solid D on the $x y$-plane is given by $R=\left\{(x, y) \in \mathbb{R}^{2}: 0 \leq x \leq 1, x^{2} \leq\right.$ $y \leq x\}$. The solid D lies above the surface $z=f_{1}(x, y)=0$ and below $z=f_{2}(x, y)=x$.
Therefore $\iiint_{D} y d x d y d z=\iint_{R}\left\{\int_{0}^{x} y d z\right\} d x d y=\int_{0}^{1} \int_{x^{2}}^{x} \int_{0}^{x} y d z d y d x$.
12. See Figure 1. Solving $4-y^{2}=2-y$ implies $y=-1,2$. The projection of the solid D on the $x y$-plane is given by $R=[0,2] \times[-1,2]$. The solid lies above $z=f_{1}(x, y)=2-y$ and below $z=f_{2}(x, y)=4-y^{2}$. Therefore $\iiint_{D} x d x d y d z=\iint_{R}\left\{\int_{2-y}^{4-y^{2}} x d z\right\} d x d y=\int_{0}^{2} \int_{-1}^{2} \int_{2-y}^{4-y^{2}} x d z d y d x$.
13. (a) See Figure 2.
(b) See Figure 3, Figure 4 and Figure 5.
(c) $\int_{0}^{4} \int_{\sqrt{x}}^{2} \int_{0}^{2-y} d z d y d x=\int_{0}^{2} \int_{0}^{y^{2}} \int_{0}^{2-y} d z d x d y=\int_{0}^{2} \int_{0}^{2-z} \int_{0}^{y^{2}} d x d y d z=\int_{0}^{2} \int_{0}^{2-y} \int_{0}^{y^{2}} d x d z d y$ $=\int_{0}^{4} \int_{0}^{2-\sqrt{x}} \int_{\sqrt{x}}^{2-z} d y d z d x=\int_{0}^{2} \int_{0}^{(2-z)^{2}} \int_{\sqrt{x}}^{2-z} d y d x d z$.
14. Consider the change of variables $x=2 u, y=4 v$ and $z=3 w$. Note that the transformation $T(u, v, w)=(2 u, 4 v, 3 w)=(x, y, z)$ maps E onto D and the $\operatorname{Jacobian} J(u, v, w)=24$.
15. (a) Solving $x^{2}+y^{2}=36-3\left(x^{2}+y^{2}\right)$ implies that $x^{2}+y^{2}=9$. The projection of the solid D on the $x y$-plane is the circular disk $\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2} \leq 9\right\}$. The solid is bounded by $z=r^{2}$ and $z=36-3 r^{2}$. Therefore $D=\{(r, \theta, z): 0 \leq \theta \leq 2 \pi, 0 \leq r \leq$ $\left.3, r^{2} \leq z \leq 36-3 r^{2}\right\}$.
(b) The projection of D on the $x y$-plane is given by $\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+(y-1)^{2} \leq 1\right\}$ which is described in cylindrical coordinates as $\{(r, \theta): 0 \leq \theta \leq \pi, 0 \leq r \leq 2 \sin \theta\}$. Therefore $D=\left\{(r, \theta, z): 0 \leq \theta \leq \pi, 0 \leq r \leq 2 \sin \theta, 0 \leq z \leq r^{2}\right\}$.
(c) The projection of the solid D on the $x y$-plane is the region between the circles $r=1$ and $r=3$. Allow θ to run from 0 to 2π and consider the cross section of the solid, perpendicular to the $x y$-plane, corresponding to a fixed θ. The cross section is a circle which is shown in Figure 6. The equation of the circle can be considered as $(r-2)^{2}+z^{2}=1$ for $1 \leq r \leq 3$. Therefore $D=\{(r, \theta, z): 0 \leq \theta \leq 2 \pi, 1 \leq r \leq 3,0 \leq$ $\left.z \leq \sqrt{1-(r-2)^{2}}\right\}$.
16. The projection of the solid D on the $x y$-plane is the circular disk $\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2} \leq 1\right\}$. We will use the cylindrical coordinates. The solid D is bounded by $z=0$ and $z=2 r$. Therefore $\iiint_{D} x^{2} d x d y d z=\int_{0}^{2 \pi} \int_{0}^{1} \int_{0}^{2 r} r^{2} \cos ^{2} \theta r d z d r d \theta$.
17. Note that $\int_{-2}^{2} \int_{-\sqrt{4-x^{2}}}^{\sqrt{4-x^{2}}} \int_{x^{2}+y^{2}}^{4} x d z d y d x=\iiint_{D} x d x d y d z$ where D is the solid bounded below by $z=x^{2}+y^{2}$ and above by $z=4$. The projection of the solid on the $x y$-plane is given by $\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2} \leq 4\right\}$. By the cylindrical coordinates $\iiint_{D} x d x d y d z=$ $\int_{0}^{2 \pi} \int_{0}^{2} \int_{r^{2}}^{4} r \cos \theta r d z d r d \theta$.
18. (a) See Figure 7. The sphere $x^{2}+y^{2}+z^{2}=1$ is expressed as $\rho=1$ where as $x^{2}+y^{2}+$ $(z-2)^{2}=4$ is expressed as $\rho=4 \cos \phi$. The two spheres intersect at $\cos \phi=\frac{1}{4}$. For a fixed $\phi \in\left[0, \cos ^{-1} \frac{1}{4}\right], \rho$ varies from 1 to $4 \cos \phi$ in the given region. Therefore the region is given by $\left\{(\rho, \theta, \phi): 0 \leq \theta \leq 2 \pi, 0 \leq \phi \leq \cos ^{-1} \frac{1}{4}, 1 \leq \rho \leq 4 \cos \phi\right\}$.
(b) See Figure 8. The sphere is expressed as $\rho=\cos \phi$. The cone is expressed as $\rho \cos \phi=$ $\rho \sin \phi$ that is $\phi=\frac{\pi}{4}$. For a fixed $\phi \in\left[0, \frac{\pi}{4}\right], \rho$ varies from 0 to $\cos \phi$ in the given region. Therefore the region is given by $\left\{(\rho, \theta, \phi): 0 \leq \theta \leq 2 \pi, 0 \leq \phi \leq \frac{\pi}{4}, 0 \leq \rho \leq \cos \phi\right\}$.
(c) See Figure 9. The cone is written as $\rho \cos \phi=\sqrt{3} \rho \sin \phi$; that is $\phi=\frac{\pi}{6}$. For a fixed $\phi \in\left[0, \frac{\pi}{6}\right], \rho$ varies from $\sec \phi$ to $2 \sec \phi$ in the given region. Therefore the region is given by $\left\{(\rho, \theta, \phi): 0 \leq \theta \leq 2 \pi, 0 \leq \phi \leq \frac{\pi}{6}, \sec \phi \leq \rho \leq 2 \sec \phi\right\}$.
19. See Figure 10. Let us use the spherical coordinates. The equation $z=\sqrt{x^{2}+y^{2}}$ is written as $\rho \cos \phi=\rho \sin \phi$. This implies that $\tan \phi=1$, i.e., $\phi=\frac{\pi}{4}$. The equation $z=4$ is written as $4=\rho \cos \phi$ that is $\rho=\frac{4}{\cos \phi}$. Therefore $\iiint_{D} \sqrt{x^{2}+y^{2}+z^{2}} d x d y d z=$ $\int_{0}^{2 \pi} \int_{0}^{\frac{\pi}{4}} \int_{0}^{4 \sec \phi} \rho \rho^{2} \sin \phi d \rho d \phi d \theta=2 \pi 4^{3} \int_{0}^{\frac{\pi}{4}} \frac{\sin \phi}{\cos ^{4} \phi} d \phi$.
20. See Figure 11. Solving $x^{2}+y^{2}+(z-1)^{2}=1$ and $x^{2}+y^{2}+z^{2}=3$ implies that $z=\frac{3}{2}$, i.e., $\rho \cos \phi=\frac{3}{2}$. The equation $x^{2}+y^{2}+(z-1)^{2}=1$ becomes $\rho=2 \cos \phi$ in the spherical coordinates. The required volumes is the sum of the volume of the portion of the region $x^{2}+y^{2}+z^{2} \leq 3$ that lies inside the cone $\phi=\frac{\pi}{6}$ and the volume of the portion of the region $x^{2}+y^{2}+(z-1)^{2} \leq 1$ that lies inside the sphere $x^{2}+y^{2}+z^{2}=3$. Therefore the required volume is given by $\int_{0}^{2 \pi} \int_{0}^{\frac{\pi}{6}} \int_{0}^{\sqrt{3}} \rho^{2} \sin \phi d \rho d \phi d \theta+\int_{0}^{2 \pi} \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \int_{0}^{2 \cos \phi} \rho^{2} \sin \phi d \rho d \phi d \theta$.
