1. Consider the surface (paraboloid) $z=x^{2}+y^{2}+1$.
(a) Parametrize the surface by considering it as a graph.
(b) Show that $r(r, \theta)=\left(r \cos \theta, r \sin \theta, r^{2}+1\right), r \geq 0,0 \leq \theta \leq 2 \pi$ is a parametrization of the surface.
(c) Parametrize the surface in the variables z and θ using the cylindrical coordinates.
2. For each of the following surfaces, describe the intersection of the surface and the plane $z=k$ for some $k>0$; and the intersection of the surface and the plane $y=0$. Further write the surfaces in parametrized form $r(z, \theta)$ using the cylindrical co-ordinates.
(a) $4 z=x^{2}+2 y^{2}$ (paraboloid)
(b) $z=\sqrt{x^{2}+y^{2}}$ (cone)
(c) $x^{2}+y^{2}+z^{2}=9, z \geq 0$ (Upper hemi-sphere)
(d) $-\frac{x^{2}}{9}-\frac{y^{2}}{16}+z^{2}=1, z \geq 0$.
3. Let S denote the surface obtained by revolving the curve $z=3+\cos y, 0 \leq y \leq 2 \pi$ about the y-axis. Find a parametrization of S.
4. Parametrize the part of the sphere $x^{2}+y^{2}+z^{2}=16,-2 \leq z \leq 2$ using the spherical co-ordinates.
5. Consider the circle $(y-5)^{2}+z^{2}=9, x=0$. Let S be the surface (torus) obtained by revolving this circle about the z-axis. Find a parametric representation of S with the parameters θ and ϕ where θ and ϕ are described as follows. If (x, y, z) is any point on the surface then θ is the angle between the x-axis and the line joining $(0,0,0)$ and $(x, y, 0)$ and ϕ is the angle between the line joining (x, y, z) and the center of the moving circle (which contains $(x, y, z))$ with the xy-plane.
6. Let S be the part of the sphere $x^{2}+y^{2}+z^{2}=4$ that lies above the cone $z=\sqrt{x^{2}+y^{2}}$. Parametrize S by considering it as a graph and again by using the spherical coordinates.
7. Let S denote the part of the plane $2 x+5 y+z=10$ that lies inside the cylinder $x^{2}+y^{2}=9$. Find the area of S.
(a) By considering S as a part of the graph $z=f(x, y)$ where $f(x, y)=10-2 x-5 y$.
(b) By considering S as a parametric surface $r(u, v)=(u \cos v, u \sin v, 10-u(2 \cos v+$ $5 \sin v)$), $0 \leq u \leq 3$ and $0 \leq v \leq 2 \pi$.
8. Find the area of the surface $x=u v, y=u+v, z=u-v$ where $(u, v) \in D=\left\{(s, t) \in \mathbb{R}^{2}\right.$: $\left.s^{2}+t^{2} \leq 1\right\}$.
9. Find the area of the part of the surface $z=x^{2}+y^{2}$ that lies between the cylinders $x^{2}+y^{2}=4$ and $x^{2}+y^{2}=16$.
10. Let S be the hemisphere $\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}+z^{2}=4, z \geq 0\right\}$.
(a) Evaluate $\iint_{S} z^{2} d \sigma$ by considering S as a graph: $z=f(x, y)$.
(b) Evaluate $\iint_{S} z d \sigma$ by considering S as a parametric surface (but not as a graph).
11. Let S be the part of the cylinder $y^{2}+z^{2}=1$ that lies between the planes $x=0$ and $x=3$ in the first octant. Evaluate $\iint_{S}(z+2 x y) d \sigma$.
12. (a) $r(x, y)=\left(x, y, 1+x^{2}+y^{2}\right), x, y \in \mathbb{R}$
(b) Easy to verify.
(c) $r(z, \theta)=(\sqrt{z-1} \cos \theta, \sqrt{z-1} \sin \theta, z), z \geq 1,0 \leq \theta \leq 2 \pi$.
13. (a) For $z>0, \frac{x^{2}}{4 z}+\frac{y^{2}}{2 z}=1$. Hence $r(z, \theta)=(2 \sqrt{z} \cos \theta, \sqrt{2 z} \sin \theta, z), z \geq 0$ and $0 \leq \theta \leq 2 \pi$.
(b) $r(z, \theta)=(z \cos \theta, z \sin \theta, z), z \geq 0$ and $0 \leq \theta \leq 2 \pi$.
(c) $r(z, \theta)=\left(\sqrt{9-z^{2}} \cos \theta, \sqrt{9-z^{2}} \sin \theta, z\right), 0 \leq z \leq 3$ and $0 \leq \theta \leq 2 \pi$.
(d) $r(z, \theta)=\left(3 \sqrt{z^{2}-1} \cos \theta, 4 \sqrt{z^{2}-1} \sin \theta, z\right), z \geq 1$ and $0 \leq \theta \leq 2 \pi$.
14. The intersection of the surface and the plane $y=t$ is a circle of radius $3+\cos t$. The projection of this circle on the $x z$-plane is parametrized as $((3+\cos t) \cos \theta,(3+\cos t) \sin \theta), 0 \leq$ $\theta \leq 2 \pi$. Since t is varying from 0 to $2 \pi, S$ is given by $r(t, \theta)=((3+\cos t) \cos \theta, t,(3+$ $\cos t) \sin \theta), 0 \leq t \leq 2 \pi, 0 \leq \theta \leq 2 \pi$.
15. The entire sphere is represented by $r(\theta, \phi)=(4 \sin \phi \cos \theta, 4 \sin \phi \sin \theta, 4 \cos \phi), 0 \leq \theta \leq 2 \pi$ and $0 \leq \phi \leq \pi$. To represent the given part, we apply $-2 \leq z \leq 2$. This implies $\frac{\pi}{3} \leq \phi \leq$ $\frac{2 \pi}{3}$. Therefore the required parametrization is $r(\theta, \phi)=(4 \sin \phi \cos \theta, 4 \sin \phi \sin \theta, 4 \cos \phi)$, $0 \leq \theta \leq 2 \pi$ and $\frac{\pi}{3} \leq \phi \leq \frac{2 \pi}{3}$.
16. If $(x, y, z) \in S$ then $z=3 \sin \phi$ and $(x, y, 0)=(r \cos \theta, r \sin \theta, 0)$ where $r=5+3 \cos \phi$. Therefore a parametric representation is $r(\theta, \phi)=((5+3 \cos \phi) \cos \theta,(5+3 \cos \phi) \sin \theta, 3 \sin \phi)$, $0 \leq \theta \leq 2 \pi$ and $0 \leq \phi \leq 2 \pi$.
17. The cone and the sphere intersect at the circle $x^{2}+y^{2}=2, z=\sqrt{2}$. The surface S is given by $z=\sqrt{4-x^{2}-y^{2}}, x^{2}+y^{2} \leq 2$ and in spherical coordinates $x=2 \sin \phi \cos \theta, y=$ $2 \sin \phi \sin \theta, z=2 \cos \phi, 0 \leq \phi \leq \frac{\pi}{4}, 0 \leq \theta \leq 2 \pi$.
18. (a) The projection D of the surface on the $x y$-plane is $\left\{(x, y): x^{2}+y^{2} \leq 9\right\}$. The required area is $\iint_{D} \sqrt{1+f_{x}^{2}+f_{y}^{2}} d x d y=\iint_{D} \sqrt{1+4+25} d x d y=9 \sqrt{30} \pi$.
(b) The area is $\int_{0}^{3} \int_{0}^{2 \pi} \sqrt{E G-F^{2}} d v d u$ where $\sqrt{E G-F^{2}}=\left|r_{u} \times r_{v}\right|=u \sqrt{30}$.
19. The surface is $r(u, v)=(u v, u+v, u-v)$ and hence $\sqrt{E G-F^{2}}=\sqrt{4+2\left(u^{2}+v^{2}\right)}$. Therefore the required area is $\iint_{D} \sqrt{4+2\left(u^{2}+v^{2}\right)} d u d v=\int_{0}^{2 \pi} \int_{0}^{1} \sqrt{4+2 r^{2}} r d r d \theta$.
20. The entire surface $z=x^{2}+y^{2}$ is parametrized as $r(r, \theta)=\left(r \cos \theta, r \sin \theta, r^{2}\right), r \geq 0$ and $0 \leq \theta \leq 2 \pi$. Now $\sqrt{E G-F^{2}}=\left|r_{\theta} \times r_{r}\right|=r \sqrt{4 r^{2}+1}$. Since the projection of the part of the surface on the $x y$-plane is the region between $x^{2}+y^{2}=4$ and $x^{2}+y^{2}=4,2 \leq r \leq 4$. Therefore the required area is $\int_{0}^{2 \pi} \int_{2}^{4} r \sqrt{4 r^{2}+1} d r d \theta$.
21. (a) Since $2 x+2 z z_{x}=0, z_{x}=-\frac{x}{z}$. Similarly $z_{y}=-\frac{y}{z}$. Hence $\sqrt{1+f_{x}^{2}+f_{y}^{2}}=$ $\sqrt{1+z_{x}^{2}+z_{y}^{2}}=\sqrt{1+\frac{x^{2}}{z^{2}}+\frac{y^{2}}{z^{2}}}=\frac{2}{z}$. The projection of the S on the $x y$-plane is $D=$ $\left\{(x, y): x^{2}+y^{2} \leq 4\right\}$. Therefore $\iint_{S} z^{2} d \sigma=\iint_{D} z^{2} \frac{2}{z} d x d y=2 \iint_{D} \sqrt{4-x^{2}-y^{2}} d x d y=$ $2 \int_{0}^{2 \pi} \int_{0}^{2} \sqrt{4-r^{2}} r d r d \theta$.
(b) The surface is given by $x=2 \cos \theta \sin \phi, y=2 \sin \theta \sin \phi, z=2 \cos \phi$ where $0 \leq \theta \leq 2 \pi$ and $0 \leq \phi \leq \frac{\pi}{2}$. Sine $\sqrt{E G-F^{2}}=4 \sin \phi, \iint_{S} d \sigma=\int_{0}^{2 \pi} \int_{0}^{\frac{\pi}{2}} 2 \cos \phi 4 \sin \phi d \phi d \theta$.
22. The surface is $r(x, \theta)=(x, \cos \theta, \sin \theta), 0 \leq x \leq 3$ and $0 \leq \theta \leq \frac{\pi}{2}$. Therefore $\sqrt{E G-F^{2}}=$ $\left|r_{x} \times r_{\theta}\right|=1$. Hence $\iint_{S}(z+2 x y)=\int_{0}^{\frac{\pi}{2}} \int_{0}^{3}(\sin \theta+2 x \cos \theta)(1) d x d \theta=\int_{0}^{\frac{\pi}{2}}(3 \sin \theta+9 \cos \theta d \theta$.
