The plane curve C described in this problem sheet is oriented counterclockwise.

1. Evaluate the line integral

$$
\oint_{C}\left(x^{2} \sin ^{2} x-y^{3}\right) d x+\left(y^{2} \cos ^{2} y-y\right) d y
$$

where C is the closed curve consisting of $x+y=0, x^{2}+y^{2}=25$ and $y=x$ and lying in the first and fourth quadrant.
2. Let a square R be enclosed by C and

$$
\oint_{C}\left(x y^{2}+x^{3} \sin ^{3} x\right) d x+\left(x^{2} y+2 x\right) d y=6 .
$$

Find the area of the square.
3. Let C be a simple closed smooth curve and α be a real number. Suppose

$$
\oint_{C}\left(\alpha e^{x} y+e^{x}\right) d x+\left(e^{x}+y e^{y}\right) d y=0
$$

Find α.
4. Let D be the region enclosed by a simple closed piecewise smooth curve C. Let F, F_{x} and F_{y} be continuous on an open set containing D. Show that

$$
\iint_{D} F_{x} d x d y=\oint_{C} F d y \text { and } \iint_{D} F_{y} d x d y=-\oint_{C} F d x
$$

5. Let C be the ellipse $x^{2}+x y+y^{2}=1$. Evaluate $\oint_{C}\left(\sin y+x^{2}\right) d x+\left(x \cos y+y^{2}\right) d y$.
6. Let D be the region enclosed by a simple closed smooth curve C. Show that

$$
\text { Area of } D=\oint_{C} x d y=-\oint_{C} y d x
$$

7. Evaluate the area of the region enclosed by the simple closed curve $x^{2 / 3}+y^{2 / 3}=1$.
8. Find the area between the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$ and the circle $x^{2}+y^{2}=25$.
9. Let $f:[a, b] \rightarrow \mathbb{R}$ be a non-negative function such that its first derivative is continuous. Suppose C is the boundary of the region bounded above by the graph of f, below by the x-axis and on the sides by the lines $x=a$ and $x=b$. Show that

$$
\int_{a}^{b} f(x) d x=-\oint_{C} y d x .
$$

10. Let D be the region enclosed by the rays $\theta=a, \theta=b$ and the curve $r=f(\theta)$. Use Green's theorem to derive the formula

$$
A=\frac{1}{2} \int_{a}^{b} r^{2} d \theta
$$

for the area of D.

1. Let R be the region enclosed by C (see Figure 1). By Green's theorem

$$
\oint_{C}\left(x^{2} \sin ^{2} x-y^{3}\right) d x+\left(y^{2} \cos ^{2} y-y\right) d y=\iint_{R} 3 y^{2} d x d y=\int_{-\pi / 4}^{\pi / 4} \int_{0}^{5} 3 r^{3} \sin ^{2} \theta d r d \theta
$$

2. By Green's theorem,

$$
\oint_{C}\left(x y^{2}+x^{3} \sin ^{3} x\right) d x+\left(x^{2} y+2 x\right) d y=\iint_{R} 2=6
$$

The area of R is 3 .
3. Let R be the region enclosed by C. By Green's theorem,

$$
\oint_{C}\left(\alpha e^{x} y+e^{x}\right) d x+\left(e^{x}+y e^{y}\right) d y=\iint_{R}(1-\alpha) e^{x} d x d y=0
$$

Hence $\alpha=1$.
4. Follows from Green's theorem.
5. By Green's theorem, $\oint_{C}\left(\sin y+x^{2}\right) d x+\left(x \cos y+y^{2}\right)=0$.
6. Follows from Green's theorem.
7. Let C denote the curve (see Figure 2). Then C is parameterized as $x(\theta)=\cos ^{3} \theta$ and $y(\theta)=\sin ^{3} \theta, 0 \leq \theta \leq 2 \pi$. The required area is

$$
A=\frac{1}{2} \oint_{C} x d y-y d x=\frac{3}{2} \int_{0}^{2 \pi} \sin ^{2} \theta \cos ^{2} \theta d \theta=\frac{3}{8} \int_{0}^{2 \pi} \sin ^{2} 2 \theta d \theta=\frac{3}{8} \pi
$$

8. The circle and the ellipse are parameterized as

$$
x_{1}(\theta)=(5 \cos \theta, 5 \sin \theta) \quad \text { and } \quad x_{2}(\theta)=(2 \sin \theta, 3 \cos \theta), \quad \theta \in[0,2 \pi]
$$

(see Figure 3). The require area is $A=\frac{1}{2} \int_{0}^{2 \pi}[(5 \cos \theta)(5 \cos \theta)+(5 \sin \theta)(5 \sin \theta)] d \theta$ $+\frac{1}{2} \int_{0}^{2 \pi}[-(2 \sin \theta)(3 \sin \theta)+(-3 \cos \theta)(2 \cos \theta)] d \theta=19 \pi$.
9. Follows from Problem 6 (See Figure 4).
10. Parameterize the rays and the curve as follows (see Figure 5):

$$
\begin{aligned}
C_{1} & :=(r \cos a, r \sin a), \quad 0 \leq r \leq f(a), \\
C_{2} & :=(r(\theta) \cos \theta, r(\theta) \sin \theta), \quad a \leq \theta \leq b, \\
C_{3} & :=(r \cos b, r \sin b), \quad 0 \leq r \leq f(b)
\end{aligned}
$$

The required area is $\frac{1}{2}\left(\oint_{C_{1}}+\oint_{C_{2}}-\oint_{C_{3}}\right)\{x d y-y d x\}$.

