1. Let F, S and \hat{n} be as in the statement of Stokes' theorem. Show that
(a) $\iint_{S}(\operatorname{curlF}) \cdot \hat{n} d \sigma=\iint_{T}(\operatorname{curl} F) \cdot\left(r_{u} \times r_{v}\right) d u d v$ if S is the parametric surface defined by $r(u, v),(u, v) \in T$.
(b) $\iint_{S}(\operatorname{curlF}) \cdot \hat{n} d \sigma=\iint_{D}(\operatorname{curlF}) \cdot\left(-f_{x} \hat{i}-f_{y} \hat{j}+\hat{k}\right) d x d y$ if S is the graph defined by $z=f(x, y),(x, y) \in D$.
2. Consider the surfaces S_{1} and S_{2} as given below. Let C be the curve of intersection of S_{1} and S_{2}. Suppose C is oriented counterclockwise when viewed from above. Parameterize C.
(a) S_{1} is $x^{2}+y^{2}+z^{2}=4$ and S_{2} is $x^{2}+y^{2}=1$.
(b) S_{1} is $y+z=2$ and S_{2} is $x^{2}+y^{2}=1$.
(c) S_{1} is $x^{2}+y^{2}+z^{2}=25$ and S_{2} is $z=4$.
3. Let C be the curve of intersection of the plane $y+z=2$ and the cylinder $x^{2}+y^{2}=1$. Suppose C is oriented counterclockwise when viewed from above.
(a) If $F(x, y, z)=(z, x, y)$, find $\oint_{C} F \cdot d R$.
(b) If $F(x, y, z)=\left(z, x+e^{y^{2}}, y+e^{z^{2}}\right)$, find $\oint_{C} F \cdot d R$.
(c) If $F(x, y, z)=-\alpha y^{2} \hat{i}+\alpha x \hat{j}+(z+\cos z)^{2} \hat{k}$ for some $\alpha \in \mathbb{R}$ and $\oint_{C} F \cdot d R=2 \pi$, find α.
(d) If curlF $=\alpha \hat{k}$ for some $\alpha \in \mathbb{R}$ and $\oint_{C} F \cdot d R=2 \pi$, find α.
4. Let $F(x, y, z)=(z, x, y)$ and S be the surface as described below. Let C be the boundary of the surface which is oriented counterclockwise when viewed from above. Evaluate $\oint_{C} F \cdot d R$ using Stokes' theorem.
(a) S is the part of the plane $z=x+4$ that lies inside the cylinder $x^{2}+y^{2}=4$.
(b) S is the part of the surface $2 x^{2}+2 y^{2}+z^{2}=9$ that lies above the surface $z=$ $\frac{1}{2} \sqrt{x^{2}+y^{2}}$.
(c) S is the part of the plane that lies inside the triangle with vertices $(1,0,0),(0,1,0)$ and $(0,0,1)$.
(d) $S=S_{1} \cup S_{2}$ where S_{1} is the part of the cylinder $x^{2}+y^{2}=1,0 \leq z \leq 4$ and S_{2} is the disk $x^{2}+y^{2} \leq 1, z=4$.
5. Let S be the upper hemi-sphere $x^{2}+y^{2}+z^{2}=1, z \geq 0$.
(a) Find F such that $\operatorname{curl} F=x e^{y} \hat{i}-e^{y} \hat{j}$.
(b) Evaluate $\iint_{S}\left(x^{2} e^{y}-y e^{y}\right) d \sigma$.
6. Let C be the parameteric curve $R(t)=(\cos t, \sin t, \cos t+4), 0 \leq t \leq 2 \pi$ and

$$
F(x, y, z)=\left(z^{2}+e^{z}, 4 x, e^{z} \cos ^{2} z\right)
$$

Evaluate $\oint_{C} F \cdot d R$.
7. Let $F(x, y, z)=\left(y,-x, 2 z^{2}+x^{2}\right)$ and S be the part of the sphere $x^{2}+y^{2}+z^{2}=25$ that lies below the plane $z=4$. Evaluate $\iint_{S} \operatorname{curl} F \cdot \hat{n} d \sigma$ where \hat{n} is the unit outward normal of S.

1. (a) Note that $\hat{n}=\frac{r_{u} \times r_{v}}{\left\|r_{u} \times r_{v}\right\|}$.
(b) Note that $\hat{n}=\frac{-f_{x} \hat{i}-f_{y} \hat{j}+\hat{k}}{\sqrt{f_{x}^{2}+f_{y}^{2}+1}}$.
2. (a) $R(\theta)=(\cos \theta, \sin \theta, \sqrt{3}), \quad 0 \leq \theta \leq 2 \pi$.
(b) $R(\theta)=(\cos \theta, \sin \theta, 2-\sin \theta), \quad 0 \leq \theta \leq 2 \pi$.
(c) $R(\theta)=(3 \cos \theta, 3 \sin \theta, 4), \quad 0 \leq \theta \leq 2 \pi$.
3. (a) Note that curlF $=(1,1,1), z=2-y=f(x, y)$ and $\left(-f_{x},-f_{y}, 1\right)=(0,1,1)$. By Stokes' theorem and Problem $1(\mathrm{~b}), \oint_{C} F \cdot d R=\iint_{D}(1,1,1) \cdot(0,1,1) d x d y$ where D is the disk $x^{2}+y^{2} \leq 1$.
(b) $\operatorname{curl} F=(1,1,1)$ and the rest is similar to the solution to Problem 3(a).
(c) Since curlF $=\alpha(1+2 y) \hat{k}$, by Stokes' theorem, $\oint_{C} F \cdot d R=\iint_{R}(0,0, \alpha(1+2 y))$. $(0,1,1) d x d y=\alpha \int_{0}^{2 \pi} \int_{0}^{1}(1+2 r \sin \theta) r d r d \theta=\alpha \pi$. Hence $\alpha=2$.
(d) Let D be the disk $x^{2}+y^{2} \leq 1$ and $z=0$. By Stokes' theorem, $\oint_{C} F \cdot d R=\iint_{D}(0,0, \alpha)$. $(0,1,1) d x d y=\alpha \iint_{D} d x d y$. Hence $\alpha=2$.
4. (a) Since $\operatorname{curl} F=(1,1,1)$ and $\left(-f_{x},-f_{y}, 1\right)=(-1,0,1)$, by Stokes' theorem $\oint_{C} F \cdot d R=$ 0.
(b) Observe that C is the circle $x^{2}+y^{2}=4$ and $z=1$. Moreover, C is also the boundary for the surface S_{1} which is the part of the plane $z=1$ that lies inside the cylinder $x^{2}+y^{2}=4$. By Stokes' theorem, $\oint_{C} F \cdot d R=\iint_{S_{1}}(\operatorname{curlF}) \cdot \hat{n} d \sigma=$ $\iint_{D}(1,1,1) \cdot(0,0,1) d x d y$ where D is the disk $x^{2}+y^{2} \leq 4$.
(c) The equation of the plane is $z=1-x-y$ and hence $\left(-f_{x},-f_{y}, 1\right)=(1,1,1)$. By Stokes' theorem, $\oint_{C} F \cdot d R=\iint_{D} 3 d x d y$ where D is the triangular region whose vertices are $(0,0),(0,1),(1,0)$.
(d) The solution to this problem is similar to that of Problem 4(b). Note that $\oint_{C} F \cdot d R=$ $\iint_{S_{3}}$ curlF $\cdot \hat{n} d \sigma$ where S_{3} is the disk $x^{2}+y^{2} \leq 1$ and $z=0$. Hence $\oint_{C} F \cdot d R=$ $\iint_{D}(1,1,1) \cdot(0,0,1) d x d y$ where $D=S_{3}$.
5. (a) By observation $F(x, y, z)=\left(0,0, x e^{y}\right)$.
(b) Observe that $\iint_{S}\left(x^{2} e^{y}-y e^{y}\right) d \sigma=\iint_{S} \operatorname{curl} F \cdot(x, y, z) d \sigma=\iint_{S} c u r l F \cdot \hat{n} d \sigma$. By Stokes' theorem, $\iint_{S}\left(x^{2} e^{y}-y e^{y}\right) d \sigma=\oint_{C} F \cdot d R$ where C is the unit circle in the $x y$-plane. Hence $\oint_{C} F \cdot d R=\oint_{C} x e^{y} d z=0$.
6. Observe that C is the boundary of the part of the surface $z=x+4$ that lies inside the cylinder $x^{2}+y^{2}=1$. Note that $\operatorname{curl} F=\left(0,2 z+e^{z}, 4\right)$. By Stokes' theorem $\oint_{C} F \cdot d R=$ $\iint_{D}\left(0,2 z+e^{z}, 4\right) \cdot(-1,0,1) d x d y$ where D is the unit circle in the $x y$-plane.
7. The boundary C of the surface S is defined by $(3 \sin \theta, 3 \cos \theta, 4)$. Note that C is oriented clockwise when viewed from above. By Stokes' theorem, $\iint_{S} \operatorname{curlF} \cdot \hat{n} d \sigma=\oint_{C} F \cdot d R=$ $\int_{0}^{2 \pi}\left(3 \cos \theta,-3 \sin \theta, 32+9 \sin ^{2} \theta\right) \cdot(3 \cos \theta,-3 \sin \theta, 0) d \theta=18 \pi$.
