1. Let D be the solid bounded by $z=0$ and the paraboloid $z=4-x^{2}-y^{2}$. Let S be the boundary of D. If

$$
F(x, y, z)=\left(x^{3}+\cos (y z), y^{3}, x+\sin (x y)\right),
$$

find $\iint_{S} F \cdot \hat{n} d \sigma$ where \hat{n} is the unit outward normal to the surface S.
2. Let S be the sphere $x^{2}+y^{2}+z^{2}=1$. Evaluate the surface integral

$$
\iint_{S}\left[x\left(2 x+3 e^{z^{2}}\right)+y\left(-y-e^{x^{2}}\right)+z\left(2 z+\cos ^{2} y\right)\right] d \sigma .
$$

3. Let S be the sphere $x^{2}+y^{2}+(z-1)^{2}=9$. Find the unit outward normal to the surface S and evaluate the surface integral

$$
\iint_{S}\left[x^{2} \sin y+y \cos ^{2} x+(z-1)\left(y^{2}-z \sin y\right)\right] d \sigma
$$

4. Let D be the region enclosed by the surfaces $x^{2}+y^{2}=4, z=0$ and $z=x^{2}+y^{2}$. Let S be the boundary of D and \hat{n} denote the unit outward normal vector to S. Suppose F is a vector field whose components have continuous first order partial derivatives. If $\operatorname{div} F=\alpha(x-1)$ for some $\alpha \in \mathbb{R}$ and $\iint_{S} F \cdot \hat{n} d \sigma=\pi$, evaluate α.
5. Let S be the sphere $x^{2}+y^{2}+z^{2}=1$. Suppose for some $\alpha \in \mathbb{R}, \iint_{S}\left[z x+\alpha y^{2}+x z\right] d \sigma=\frac{4 \pi}{3}$. Find α.
6. Let S be the hemisphere $x^{2}+y^{2}+z^{2}=1$ and $z \geq 0$. Evaluate $\iint_{S}\left[(z+\cos z) x+y^{2}+x z\right] d \sigma$.

$$
\underline{\text { Practice Problems 39: Hints/Solutions }}
$$

1. By divergence theorem

$$
\iint_{S} F \cdot \hat{n} d \sigma=\iiint_{D} d i v F d V=\iiint_{D} 3\left(x^{2}+y^{2}\right) d V=\int_{0}^{2 \pi} \int_{0}^{2} \int_{0}^{4-r^{2}} 3 r^{2} r d z d r d \theta=32 \pi .
$$

2. Observe that the given surface integral is $\iint_{S} F \cdot \hat{n} d \sigma$ where $F(x, y, z)=\left(2 x+3 e^{z^{2}},-y-\right.$ $\left.e^{x^{2}}, 2 z+\cos ^{2} y\right)$ and $\hat{n}=(x, y, z)$ which is the unit outward normal to the sphere. By divergence theorem $\iint_{S} F \cdot \hat{n} d \sigma=\iiint_{D} d i v F d V=3 \iiint_{D} d V=4 \pi$.
3. The given sphere S is $g(x, y, z)=9$ where $g(x, y, z)=x^{2}+y^{2}+(z-1)^{2}$. The unit normal vector \hat{n} of S is $\frac{\nabla g}{\|\nabla g\|}=\frac{1}{3}(x, y, z-1)$. Verify that \hat{n} is the unit outward normal vector. The given surface integral is $\iint_{S} F \cdot \hat{n} d \sigma$ where $F(x, y, z)=\left(x \sin y, \cos x, y^{2}-z \sin y\right)$. By divergence theorem, $\iint_{S} F \cdot 3 \hat{n} d \sigma=3 \iiint_{D} d i v F d V=0$.
4. By divergence theorem $\iint_{S} F \cdot \hat{n} d \sigma=\iiint_{D} \alpha(x-1) d V=\alpha \int_{0}^{2 \pi} \int_{0}^{2} \int_{0}^{r^{2}}(r \cos \theta-1) d z r d r d \theta=$ $-8 \pi \alpha$. Therefore $\alpha=-\frac{1}{8}$.
5. Let D denote the solid enclosed by the surface S. By divergence theorem, $\iint_{S}(z, \alpha y, x)$. $(x, y, z) d \sigma=\iiint_{D} \alpha d V=\alpha \frac{4 \pi}{3}$. Hence $\alpha=1$.
6. Let $F(x, y, z)=(z+\cos z, y, x)$ and S_{1} be the disk $x^{2}+y^{2} \leq 1, z=0$. Note that S is not a closed surface. Suppose D denotes the solid $x^{2}+y^{2}+z^{2} \leq 1, z \geq 0$. By divergence theorem, $\iint_{S}\left[(z+\cos z) x+y^{2}+x z\right] d \sigma=\iiint_{D} d i v F d V-\iint_{S_{1}}(z+\cos z, y, x) \cdot(-\hat{k}) d \sigma=\frac{2 \pi}{3}$.
