Practice problems 4: Continuity and Limit

1. Find the value of α such that $\lim _{x \rightarrow-1} \frac{2 x^{2}-\alpha x-14}{x^{2}-2 x-3}$ exists. Find the limit.
2. Let $\lim _{x \rightarrow 0} \frac{f(x)}{x^{2}}=5$. Show that $\lim _{x \rightarrow 0} \frac{f(x)}{x}=0$.
3. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ and $x_{0} \in \mathbb{R}$. Suppose $\lim _{x \rightarrow x_{0}} f(x)$ exists. Show that $\lim _{x \rightarrow 0} f\left(x+x_{0}\right)=$ $\lim _{x \rightarrow x_{0}} f(x)$.
4. Let $f(x)=|x|$ for every $x \in \mathbb{R}$. Show that f is continuous on \mathbb{R}.
5. Let $f:[0, \pi] \rightarrow \mathbb{R}$ be defined by $f(0)=0$ and $f(x)=x \sin \frac{1}{x}-\frac{1}{x} \cos \frac{1}{x}$ for $x \neq 0$. Is f continuous?
6. Let $f, g: \mathbb{R} \rightarrow \mathbb{R}$ be continuous such that given any two points $x_{1}<x_{2}$, there exists a point x_{3} such that $x_{1}<x_{3}<x_{2}$ and $f\left(x_{3}\right)=g\left(x_{3}\right)$. Show that $f(x)=g(x)$ for all x.
7. Let $f(x)=0$ when x is rational and 1 when x is irrational. Determine the points of continuity for the function f.
8. Let [$\cdot]$ denote the integer part function and $f:[0, \infty) \rightarrow \mathbb{R}$ be defined by $f(x)=\left[x^{2}\right] \sin \pi x$. Show that f is continuous at each $x \neq \sqrt{n}, n=1,2, \ldots$. Further, show that f is discontinuous on $\left\{x \in[0, \infty): x=\sqrt{n}\right.$ where $n \neq k^{2}$, for some positive integer $\left.k\right\}$.
9. Let $f: \mathbb{R} \rightarrow(0, \infty)$ satisfy $f(x+y)=f(x) f(y)$ for all $x, y \in \mathbb{R}$. Suppose f is continuous at $x=0$. Show that f is continuous at all $x \in \mathbb{R}$.
10. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function such that $f(x)=f\left(x^{2}\right)$ for all $x \in \mathbb{R}$. Show that f is constant.
11. Suppose $f:[0, \infty) \rightarrow \mathbb{R}$ is continuous and $\lim _{x \rightarrow \infty} f(x)$ exists. Show that f is bounded on $[0, \infty)$.
12. $\left(^{*}\right)$ Let $f:[0,1] \rightarrow \mathbb{R}$ be one-one. Suppose f is continuous. Show that f^{-1} is also continuous on $\{f(x): x \in[0,1]\}$, the range of f.
13. (*) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be continuous and $f(x+y)=f(x)+f(y)$ for all $x, y \in \mathbb{R}$. Show that $f(x)=f(1) x$ for all $x \in \mathbb{R}$.
14. (*) Let $f:(0,1) \rightarrow \mathbb{R}$ be given by

$$
f(x)= \begin{cases}\frac{1}{q} & \text { if } x=\frac{p}{q} \text { where } p, q \in \mathbb{N} \text { and } p, q \text { have no common factors } \\ 0 & \text { if } x \text { is irrational }\end{cases}
$$

(a) Let $x_{n}=\frac{p_{n}}{q_{n}} \in(0,1)$ where $p_{n}, q_{n} \in \mathbb{N}$ and have no common factors. Suppose $x_{n} \rightarrow x$ for some x with $x_{n} \neq x$ for all $n \in \mathbb{N}$. Show that $\lim _{n \rightarrow \infty} q_{n}=\infty$.
(b) Show that f is continuous at every irrational.
(c) Show that f is discontinuous at every rational.

Practice Problems 4: Hints/solutions

1. $\alpha=12$ and the limit is 4 .
2. Note that $\frac{f(x)}{x}=\frac{f(x)}{x^{2}} x$ for $x \neq 0$.
3. Let $\lim _{x \rightarrow x_{0}} f(x)=M$ for some $M \in \mathbb{R}$. Let $x_{n} \rightarrow 0, x_{n} \neq 0 \forall n$. Then $x_{n}+x_{0} \rightarrow x_{0}$. Since $\lim _{x \rightarrow x_{0}} f(x)=M, f\left(x_{n}+x_{0}\right) \rightarrow M$. This implies that $\lim _{x \rightarrow 0} f\left(x+x_{0}\right)=M$.
4. Let $x \in \mathbb{R}$ and $x_{n} \rightarrow x$. Then $\left|x_{n}\right| \rightarrow|x|$, because, $\| x_{n}-|x|\left|\leq\left|x_{n}-x\right|\right.$. Therefore f is continuous at x.
5. The function is not continuous at 0 , because, $x_{n}=\frac{1}{2 n \pi} \rightarrow 0$ but $f\left(\frac{1}{2 n \pi}\right) \nrightarrow f(0)$.
6. Fix some $x_{0} \in \mathbb{R}$. For every n, find x_{n} such that $x_{0}-\frac{1}{n}<x_{n}<x_{0}$ and $(f-g)\left(x_{n}\right)=0$. Allow $n \rightarrow \infty$ and apply the continuity.
7. Suppose x_{0} is rational. Find an irrational sequence $\left(x_{n}\right)$ such that $x_{n} \rightarrow x_{0}$. Then $f\left(x_{n}\right)=1 \nrightarrow f\left(x_{0}\right)=0$. Therefore f is not continuous at x_{0}. Let y_{0} be rational. Show that f is not continuous at y_{0}.
8. Case 1: $x_{0} \neq \sqrt{n}, n=1,2, \ldots$. It is clear that f is continuous at x_{0}. Case 2: $x_{0}=$ \sqrt{n} where $n=k^{2}$, for some positive integer k, i.e $x_{0}=k$. In this case $\lim _{x \rightarrow k^{+}} f(x)=$ $\lim _{x \rightarrow k^{-}} f(x)=0$. Case 3: $x_{0}=\sqrt{n}$ where $n \neq k^{2}$, for some positive integer k. In this case, $\lim _{x \rightarrow \sqrt{n}^{+}} f(x)=n \sin (\pi \sqrt{n})$ and $\lim _{x \rightarrow \sqrt{n}^{-}} f(x)=(n-1) \sin (\pi \sqrt{n})$.
9. Since $f(0)=f(0)^{2}, f(0)=1$ and since $f(x-x)=f(0), f(-x)=\frac{1}{f(x)}$. Let $x_{0} \in \mathbb{R}$ and $x_{n} \rightarrow x_{0}$. By continuity at $0, f\left(x_{n}-x_{0}\right) \rightarrow 1$ and hence $f\left(x_{n}\right) \rightarrow \frac{1}{f\left(-x_{0}\right)}=f\left(x_{0}\right)$.
10. Suppose $x>0$. By the assumption, $f(x)=f\left(x^{\frac{1}{2}}\right)=f\left(x^{\frac{1}{2^{2}}}\right)=f\left(x^{\frac{1}{2^{n}}}\right)$. Since $x^{\frac{1}{2^{n}}} \rightarrow$ $1, f\left(x^{\frac{1}{2^{n}}}\right) \rightarrow f(1)$, i.e. $f(x)=f(1)$. Now $f(-x)=f\left((-x)^{2}\right)=f\left(x^{2}\right)=f(x)$. At $x=0$, by continuity, $\lim _{x \rightarrow 0} f(x)=f(0)=f(1)$. Therefore $f(x)=f(1)$ for all $x \in \mathbb{R}$.
11. Suppose $\lim _{x \rightarrow \infty} f(x)=\beta$ for some β. Then there exists a positive real number M such that $|f(x)-\beta|<1$ for all x such that $x \geq M$. Then $|f(x)| \leq 1+\beta$ for every x such that $x \geq M$. That is f is bounded on $\{x: x \geq M\}$. Also by continuity, f is bounded on $[0, M]$. Therefore f is bounded on $[0, \infty)$.
12. Let $f\left(x_{n}\right) \rightarrow f\left(x_{0}\right)$ for some $x_{n}, x_{0} \in[0,1]$. We show that $x_{n} \rightarrow x_{0}$ which proves that f^{-1} is continuous at $f\left(x_{0}\right)$. If $\left(x_{n_{k}}\right)$ is any subsequence, then by Bolzano-Weierstrass theorem, there exists a subsequence $\left(x_{n_{k_{i}}}\right)$ such that $x_{n_{k_{i}}} \rightarrow \alpha$ for some $\alpha \in[0,1]$. By continuity $f\left(x_{n_{k_{i}}}\right) \rightarrow f(\alpha)$. By our assumption $f(\alpha)=f\left(x_{0}\right)$ and since f is one-one $x_{0}=\alpha$. By Problem 8 of Practice problems $3, x_{n} \rightarrow x_{0}$.
13. First observe that $f(0)=0$ and $f(n)=n f(1)$ for all $n \in \mathbb{N}$. Next note that $f(-1)=-f(1)$ and $f(m)=f(1) m$ for all $m \in \mathbb{Z}$. By observing $f\left(\frac{1}{n}\right)=f(1) \frac{1}{n}$ for all $n \in \mathbb{N}$, show that $f\left(\frac{m}{n}\right)=f(1) \frac{m}{n}$ for all $m \in \mathbb{Z}$ and $n \in \mathbb{N}$. Finally take any irrational number x and find $r_{n} \in \mathbb{Q}$ such that $r_{n} \rightarrow x$ and apply the continuity to conclude that $f(x)=f(1) x$.
14. (a) If for some $M \in \mathbb{N}, q_{n}<M$ for all $n \in \mathbb{N}$, then the set $\left\{x_{n}: n \in \mathbb{N}\right\}$ is finite which is not true. Similarly we can show that any subsequence of $\left(q_{n}\right)$ cannot be bounded.
(b) Suppose x_{0} is rational in $(0,1)$ and $x_{n} \rightarrow x_{0}$ where x_{n} can be rational or irrational. Apply (a) to show that $f\left(x_{n}\right) \rightarrow 0=f\left(x_{0}\right)$.
(c) Suppose x_{0} is rational in $(0,1)$. To show that f is discontinuous at x_{0}, choose an irrational sequence $\left(x_{n}\right)$ such that $x_{n} \rightarrow x_{0}$.
