1. Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous and $f(x)>0$ for all $x \in[a, b]$. Show that there exists $\alpha>0$ such that $f(x) \geq \alpha$ for all $x \in[a, b]$.
2. Let $f:[0,1] \rightarrow(0,1)$ be an on-to function. Show that f is not continuous on $[0,1]$.
3. Give an example of a function f on $[0,1]$ which is not continuous but it satisfies the IVP (We say that f has the property IVP if for every $x, y \in[0,1]$ and α satisfying $f(x)<\alpha<f(y)$ or $f(x)>\alpha>f(y)$ there exists $x_{0} \in[x, y]$ such that $\left.f\left(x_{0}\right)=\alpha\right)$.
4. Show that the polynomial $x^{4}+6 x^{3}-8$ has at least two real roots.
5. Show that there exists at least one positive real solution to the equation $\left|x^{31}+x^{8}+20\right|=x^{32}$.
6. Let $f:[0,1] \rightarrow \mathbb{R}$ be continuous. Show that there exists an $x_{0} \in[0,1]$ such that $f\left(x_{0}\right)=$ $\frac{1}{3}\left(f\left(\frac{1}{4}\right)+f\left(\frac{1}{2}\right)+f\left(\frac{3}{4}\right)\right)$.
7. Let $f(x)=x^{2 n}+a_{2 n-1} x^{2 n-1}+\ldots+a_{1} x+a_{0}$ where $n \in \mathbb{N}$ and $a_{i}^{\prime} s$ are in \mathbb{R}. Show that f attains its infimum on \mathbb{R}.
8. Let $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}$ where $n>0$ and $a_{i}^{\prime} s$ are in \mathbb{R}. If n is even and $a_{n}=1$ and $a_{0}=-1$, show that $f(x)$ has at least two real roots.
9. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function. Show that f is a constant function if
(a) $f(x)$ is rational for each $x \in \mathbb{R}$.
(b) $f(x)$ is an integer for each $x \in \mathbb{Q}$.
10. Let $f:[0,1] \rightarrow R$. Suppose that $f(x)$ is rational for irrational x and that $f(x)$ is irrational for rational x. Show that f cannot be continuous.
11. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function such that $f(x+2 \pi)=f(x)$ for all $x \in \mathbb{R}$. Show that there exists $x_{0} \in \mathbb{R}$ such that $f\left(x_{0}+\pi\right)=f\left(x_{0}\right)$.
12. Let $f:[0,1] \rightarrow \mathbb{R}$ be continuous such that $f(0)=f(1)$. Show that there exists $x_{0} \in\left[0, \frac{1}{2}\right]$ such that $f\left(x_{0}\right)=f\left(x_{0}+\frac{1}{2}\right)$.
13. Let $f, g:[0,1] \rightarrow \mathbb{R}$ be continuous such that $\inf \{f(x): x \in[0,1]\}=\inf \{g(x): x \in[0,1]\}$. Show that there exists $x_{0} \in[0,1]$ such that $f\left(x_{0}\right)=g\left(x_{0}\right)$.
14. A cross country runner runs continuously a eight kilometers course in 40 minutes without taking rest. Show that, somewhere along the course, the runner must have covered a distance of one kilometer in exactly 5 minutes.
15. (*) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous one-one map. Show that f is either strictly increasing or strictly decreasing.
16. (*) Let $f: \mathbb{R} \rightarrow[0, \infty)$ be a bijective map. Show that f is not continuous on \mathbb{R}.
17. (*) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function.
(a) Suppose f attains each of its values exactly two times. Let $f\left(x_{1}\right)=f\left(x_{2}\right)=\alpha$ for some $\alpha \in \mathbb{R}$ and $f(x)>\alpha$ for some $x \in\left[x_{1}, x_{2}\right]$. Show that f attains its maximum in $\left[x_{1}, x_{2}\right]$ exactly at one point.
(b) Using (a) show that f cannot attain each of its values exactly two times.
18. Observe that f attains its minimum on $[a, b]$. Take $\alpha=\inf \{f(x): x \in[a, b]\}$.
19. The minimum value of f is 0 which is not attained by f.
20. Consider $f(0)=0$ and $f(x)=\sin \frac{1}{x}$ for $x \neq 0$.
21. Note that $f(0)<0, f(2)>0$ and $f(-8)>0$. Use IVP.
22. Let $f(x)=\frac{1}{x^{32}}\left|x^{31}+x^{8}+20\right|-1$. Then $f(x) \rightarrow \infty$ as $x \rightarrow 0$ and $f(x) \rightarrow-1$ as $x \rightarrow \infty$. By IVP, there exists $x_{0} \in(0, \infty)$ such that $f\left(x_{0}\right)=0$.
23. Let $x_{1}, x_{2} \in[0,1]$ be such that $f\left(x_{1}\right)=\inf \{f(x): x \in[0,1]\}$ and $f\left(x_{2}\right)=\sup \{f(x): x \in$ $[0,1]\}$. Note that $f\left(x_{1}\right) \leq \frac{1}{3}\left(f\left(\frac{1}{4}\right)+f\left(\frac{1}{2}\right)+f\left(\frac{3}{4}\right)\right) \leq f\left(x_{2}\right)$. Apply IVP.
24. Note that $f(x) \rightarrow \infty$ as $x \rightarrow \infty$ or $x \rightarrow-\infty$. Let $M>0$ be such that $M>f(0)$ or $f(y)$ for some $y \in \mathbb{R}$. Then there exists p such that $f(x)>M$ for all $|x|>p$. Since f is continuous there exists x_{0} such that $f\left(x_{0}\right)=\inf \{f(x): x \in[-p, p]\}=\inf \{f(x): x \in \mathbb{R}\}$
25. Note that $f(0)=-1$ and $f(x) \rightarrow \infty$ as $x \rightarrow \infty$ or $x \rightarrow-\infty$. Apply IVP.
26. (a) Suppose $f(x) \neq f(y)$ for some $x, y \in \mathbb{R}$. Find an irrational number α between $f(x)$ and $f(y)$. By IVP, there exists $z \in(x, y)$ such that $f(z)=\alpha$ which is a contradiction.
(b) Let α be irrational. Find $r_{n} \in \mathbb{Q}$ such that $r_{n} \rightarrow \alpha$. By continuity $f\left(r_{n}\right) \rightarrow f(\alpha)$. Since $f\left(r_{n}\right)^{\prime} s$ are integers, $\left(f\left(r_{n}\right)\right)$ has to be eventually a constant sequence and hence $f(\alpha)$ is an integer. So f takes only integer value for each $x \in \mathbb{R}$. By IVP, $f(x)$ has to be constant.
27. Let g be defined by $g(x)=f(x)-x \forall x \in[0,1]$. Then $g(x)$ irrational for all $x \in[0,1]$. Because of IVP, g cannot be continuous and hence f cannot be continuous.
28. Consider the function $g(x)=f(x+\pi)-f(x)$ and the values $g(0)$ and $g(\pi)$. Apply IVP.
29. Consider the function $g(x)=f(x)-f\left(x+\frac{1}{2}\right)$ and the values $g(0)$ and $g\left(\frac{1}{2}\right)$. Apply IVP.
30. Let $x_{1}, x_{2} \in[0,1]$ be such that $f\left(x_{1}\right)=\inf \{f(x): x \in[0,1]\}$ and $g\left(x_{2}\right)=\inf \{g(x): x \in$ $[0,1]\}$. Note that $f\left(x_{1}\right) \leq g\left(x_{1}\right)$ and $f\left(x_{2}\right) \geq g\left(x_{2}\right)$. Let $\varphi(x)=f(x)-g(x)$. Apply IVP to φ.
31. Let x denote the distance, in kilometers, along the course. Let $f:[0,7] \rightarrow \mathbb{R}$, where $f(x)=$ time taken in minutes to cover the distance from x to $x+1$. Observe that $\sum_{i=0}^{7} f(i)=40$. Hence $f(i)<5$ or $f(i)>5$ is not possible for all $i=0$ to 7 . Therefore, there exists $i, j \in[0,7]$ such that $f(i) \leq 5 \leq f(j)$. By IVP there exists $c \in(i, j)$ such that $f(c)=5$.
32. Suppose f is neither strictly increasing nor strictly decreasing. Then we can assume that there exists x_{1}, x_{2} and x_{3} such that $x_{1}<x_{2}<x_{3}$ and $f\left(x_{1}\right)>f\left(x_{2}\right)$ and $f\left(x_{2}\right)<f\left(x_{3}\right)$. Let α be such that $f\left(x_{2}\right)<\alpha<\min \left\{f\left(x_{1}\right), f\left(x_{3}\right)\right\}$. By IVP, there exist $u_{1} \in\left(x_{1}, x_{2}\right)$ and $u_{2} \in\left(x_{2}, x_{3}\right)$ such that $f\left(u_{1}\right)=\alpha=f\left(u_{2}\right)$. Since f is one-one, $u_{1}=u_{2}$ which is a contradiction.
33. If f is continuous, by Problem $15, f$ is either is strictly increasing or strictly decreasing. Suppose f is strictly increasing. Since f is on-to, there exists x_{0} such that $f\left(x_{0}\right)=0$. Then $f(x)<f\left(x_{0}\right)$ for all $x<x_{0}$ which is a contradiction.
34. (a) Let $\beta=\max \left\{f(x): x \in\left[x_{1}, x_{2}\right]\right\}$. If f attains β on $\left[x_{1}, x_{2}\right]$ at more than one point, then there exists $\gamma \in(\alpha, \beta)$ such that f attains γ more than twice which is a contradiction. (b) Suppose f attains each of its values exactly two times. Let x_{1}, x_{2}, α and β be as in (a). Since f attains β exactly once in $\left[x_{1}, x_{2}\right]$, there exits x_{0} lying outside $\left[x_{1}, x_{2}\right]$ such that $f\left(x_{0}\right)=\beta>\alpha$. Then, by IVP, every number in (α, β) is attained by f more than twice which is a contradiction.
