- 1. Use the mean value theorem (MVT) to establish the following inequalities.
 - (a) $e^x \ge 1 + x$ for $x \in \mathbb{R}$.
 - (b) $\frac{1}{2\sqrt{n+1}} < \sqrt{n+1} \sqrt{n} < \frac{1}{2\sqrt{n}}$ for all $n \in \mathbb{N}$.
 - (c) $\frac{x-1}{x} < lnx < x-1 \text{ for } x > 1.$
- 2. Does there exist a differentiable function $f:[0,2]\to\mathbb{R}$ satisfying f(0)=-1, f(2)=4 and $f'(x)\leq 2$ for all $x\in[0,2]$?
- 3. Let $f:[0,1] \to \mathbb{R}$ be differentiable such that |f'(x)| < 1 for all $x \in [0,1]$. Show that there exists at most one $c \in [0,1]$ such that f(c) = c.
- 4. Let $f: \mathbb{R} \to \mathbb{R}$ be differentiable such that, for some $\alpha \in \mathbb{R}$, $|f'(x)| \le \alpha < 1$ for all $x \in \mathbb{R}$. Let $a_1 \in \mathbb{R}$ and $a_{n+1} = f(a_n)$ for $n \in \mathbb{N}$. Show that the sequence (a_n) converges.
- 5. Let $f:[0,1] \to \mathbb{R}$ be twice differentiable. Suppose that the line segment joining the points (0, f(0)) and (1, f(1)) intersect the graph of f at a point (a, f(a)) where 0 < a < 1. Show that there exists $x_0 \in [0, 1]$ such that $f''(x_0) = 0$.
- 6. Let $f:[0,1] \to \mathbb{R}$ be continuous. Suppose that f is differentiable on (0,1) and $\lim_{x\to 0} f'(x) = \alpha$ for some $\alpha \in \mathbb{R}$. Show that f'(0) exists and $f'(0) = \alpha$.
- 7. Let $f:[0,1] \to \mathbb{R}$ be differentiable and f(0)=0. Suppose that $|f'(x)| \le |f(x)|$ for all $x \in [0,1]$. Show that f(x)=0 for all $x \in [0,1]$.
- 8. Let $f:[0,\infty)\to\mathbb{R}$ be continuous and f(0)=0. Suppose that f'(x) exists for all $x\in(0,\infty)$ and f' is increasing on $(0,\infty)$. Show that the function $g(x)=\frac{f(x)}{x}$ is increasing on $(0,\infty)$.
- 9. Establish the following inequalities.
 - (a) For $\alpha > 1$, $(1+x)^{\alpha} > 1 + \alpha x$ for all x > -1.
 - (b) For x > 0, $e \ln x \le x$.
- 10. Let $f:[a,b] \to \mathbb{R}$ be differentiable and $a \ge 0$. Using Cauchy mean value theorem, show that there exist $c_1, c_2 \in (a,b)$ such that $\frac{f'(c_1)}{a+b} = \frac{f'(c_2)}{2c_2}$.
- 11. Let $f: \mathbb{R} \to \mathbb{R}$ be such that f''(c) exists at some $c \in \mathbb{R}$. Using L'Hospital rule, show that

$$\lim_{h \to 0} \frac{f(c+h) - 2f(c) + f(c-h)}{h^2} = f''(c).$$

Show with an example that if the above limit exists then f''(c) may not exist.

- 12. (*) Let $f:[a,b] \to \mathbb{R}$ be differentiable. If $f'(x) \neq 0$ for all $x \in [a,b]$, then show that either $f'(x) \geq 0$ for all $x \in [a,b]$ or $f'(x) \leq 0$ for all $x \in [a,b]$.
- 13. (*) Let $f:[a,b] \to \mathbb{R}$ be differentiable and $\alpha \in \mathbb{R}$ be such that $f'(a) < \alpha < f'(b)$. Define $g(x) = f(x) \alpha x$ for all $x \in [a,b]$.
 - (a) Using the fact that g'(a) < 0 and g'(b) > 0, show that the condition $g'(x) \neq 0$ for all $x \in [a, b]$ leads to a contradiction.
 - (b) Show that there exists $c \in [a, b]$ such that $f'(c) = \alpha$.
 - (c) From (b), conclude that if a function f is differentiable at every point of an interval [a, b], then its derivative f' has the IVP on [a, b].

Practice Problems 7: Hints/Solutions

- 1. (a) Let x > 0. By the MVT there exists $c \in (0, x)$ such that $e^x e^0 = e^c(x 0)$. This implies that $e^x \ge 1 + x$. The proof is similar for the case x < 0.
 - (b) By the MVT, for $f(x) = \sqrt{x}$, there exists $c \in (n, n+1)$ such that $\sqrt{n+1} \sqrt{n} = \frac{1}{2\sqrt{c}}$.
 - (c) By the MVT, there exists $c \in (1, x)$ such that $\ln x \ln 1 = \frac{1}{c}(x 1)$.
- 2. If so, then by the MVT there exits $c \in (0,2)$ such that 5 = f(2) f(0) = 2f'(c).
- 3. Suppose $f(c_1) = c_1$ and $f(c_2) = c_2$ for some $c_1, c_2 \in [0, 1]$ and $c_1 \neq c_2$. Then by the MVT, there exists $c_0 \in (0, 1)$ such that $c_2 c_1 = f(c_2) f(c_1) = f'(c_0)(c_2 c_1)$; i.e., $f'(c_0) = 1$.
- 4. Note that, for some c, $|a_{n+2}-a_{n+1}|=|f(a_{n+1})-f(a_n)|=|f'(c)||a_{n+1}-a_n|<\alpha|a_{n+1}-a_n|$. The sequence satisfies the Cauchy criterion and hence it converges.
- 5. Using the MVT on [0,a] and [a,1], obtain $b \in (0,a)$ and $c \in (a,1)$ such that $\frac{f(a)-f(0)}{a-0} = f'(b)$ and $\frac{f(1)-f(a)}{1-a} = f'(c)$. Note that f'(b) = f'(c) because they are slopes of the same chord. By Rolle's theorem there exists $x_0 \in (b,c)$ such that $f''(x_0) = 0$.
- 6. For every x > 0, by the MVT, there exists $c_x \in (0, x)$ such that $\frac{f(x) f(0)}{x} = f'(c_x)$. Now $f'(0) = \lim_{x \to 0} \frac{f(x) f(0)}{x} = \lim_{x \to 0} f'(c_x) = \lim_{c_x \to 0} f'(c_x) = \alpha$.
- 7. For $x \in (0,1)$, by the MVT, there exists x_1 such that $0 < x_1 < x$ and $f(x) = f'(x_1)x$. This implies that $|f(x)| \le x|f(x_1)|$. Similarly there exists x_2 such that $0 < x_2 < x_1$ and $|f(x_1)| \le x_1|f(x_2)|$. Therefore $|f(x)| \le x^2|f(x_2)|$. Find a sequence (x_n) in (0,1) such that $|f(x)| \le x^n|f(x_n)|$. Since f is bounded on [0,1], $x^n|f(x_n)| \to 0$. Hence f(x) = 0.
- 8. Note that $g'(x) = \frac{xf'(x) f(x)}{x^2} = \frac{f'(x) \frac{f(x)}{x}}{x}$. Observe that, by the MVT, $\frac{f(x)}{x} = f'(c_x)$ for some $c_x \in (0, x)$. Since f' is increasing, $g'(x) \ge 0$. Hence g is increasing.
- 9. (a) Let $\alpha > 1$ and $f(x) = (1+x)^{\alpha} (1+\alpha x)$ on $(-1,\infty)$. Therefore $f'(x) \le 0$ on (-1,0] and $f'(x) \ge 0$ on $[0,\infty)$. Hence $f(x) \ge f(0) = 0$ on (-1,0] and $f(x) \ge f(0) = 0$ on $[0,\infty)$. Therefore $f(x) \ge 0$ on $(-1,\infty)$.
 - (b) Define $f(x) = x e \ln x$ on $(0, \infty)$. Then $f'(x) = \frac{x e}{x}$. Therefore f'(x) > 0 on (e, ∞) and f'(x) < 0 on (0, e). Hence f(x) > f(e) for all $x \in (0, \infty)$ and $x \neq e$.
- 10. Apply Cauchy MVT to f(x) and $g_1(x) = x$. Again apply to f(x) and $g_2(x) = x^2$.
- 11. Since f''(c) exists there exists a $\delta > 0$ such that f'(x) exists on $(c \delta, c + \delta)$. Therefore by L'Hospital rule, the given limit is equal to $\lim_{h\to 0} \frac{f'(c+h)-f'(c-h)}{h^2}$ if it exists. But $\lim_{h\to 0} \frac{f'(c+h)-f'(c-h)}{2h} = \frac{1}{2} \left[\lim_{h\to 0} \frac{f'(c+h)-f'(c)}{h} + \lim_{h\to 0} \frac{f'(c-h)-f'(c)}{-h} \right] = \frac{1}{2} \left[f''(c) + f''(c) \right]$. Let f(x) = 1 on $(0, \infty)$, f(0) = 0 and f(x) = -1 on $(-\infty, 0)$. Then f is not continuous at 0 hence f''(0) does not exist. It can be easily verified that the limit given in the question exists.
- 12. Since f is one-one, it either strictly increasing or strictly decreasing (see Problem 15 of Practice Problems 5). Apply the definition of f' to show that either $f'(x) \geq 0$ for all $x \in [a, b]$ or $f'(x) \leq 0$ for all $x \in [a, b]$.
- 13. (a) Follows from Problem 12.
 - (b) Trivial.
 - (c) Trivial.