1. Use the mean value theorem (MVT) to establish the following inequalities.
(a) $e^{x} \geq 1+x$ for $x \in \mathbb{R}$.
(b) $\frac{1}{2 \sqrt{n+1}}<\sqrt{n+1}-\sqrt{n}<\frac{1}{2 \sqrt{n}}$ for all $n \in \mathbb{N}$.
(c) $\frac{x-1}{x}<\ln x<x-1$ for $x>1$.
2. Does there exist a differentiable function $f:[0,2] \rightarrow \mathbb{R}$ satisfying $f(0)=-1, f(2)=4$ and $f^{\prime}(x) \leq 2$ for all $x \in[0,2] ?$
3. Let $f:[0,1] \rightarrow \mathbb{R}$ be differentiable such that $\left|f^{\prime}(x)\right|<1$ for all $x \in[0,1]$. Show that there exists at most one $c \in[0,1]$ such that $f(c)=c$.
4. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be differentiable such that, for some $\alpha \in \mathbb{R},\left|f^{\prime}(x)\right| \leq \alpha<1$ for all $x \in \mathbb{R}$. Let $a_{1} \in \mathbb{R}$ and $a_{n+1}=f\left(a_{n}\right)$ for $n \in \mathbb{N}$. Show that the sequence $\left(a_{n}\right)$ converges.
5. Let $f:[0,1] \rightarrow \mathbb{R}$ be twice differentiable. Suppose that the line segment joining the points $(0, f(0))$ and $(1, f(1))$ intersect the graph of f at a point $(a, f(a))$ where $0<a<1$. Show that there exists $x_{0} \in[0,1]$ such that $f^{\prime \prime}\left(x_{0}\right)=0$.
6. Let $f:[0,1] \rightarrow \mathbb{R}$ be continuous. Suppose that f is differentiable on $(0,1)$ and $\lim _{x \rightarrow 0} f^{\prime}(x)=$ α for some $\alpha \in \mathbb{R}$. Show that $f^{\prime}(0)$ exists and $f^{\prime}(0)=\alpha$.
7. Let $f:[0,1] \rightarrow \mathbb{R}$ be differentiable and $f(0)=0$. Suppose that $\left|f^{\prime}(x)\right| \leq|f(x)|$ for all $x \in[0,1]$. Show that $f(x)=0$ for all $x \in[0,1]$.
8. Let $f:[0, \infty) \rightarrow \mathbb{R}$ be continuous and $f(0)=0$. Suppose that $f^{\prime}(x)$ exists for all $x \in(0, \infty)$ and f^{\prime} is increasing on $(0, \infty)$. Show that the function $g(x)=\frac{f(x)}{x}$ is increasing on $(0, \infty)$.
9. Establish the following inequalities.
(a) For $\alpha>1,(1+x)^{\alpha} \geq 1+\alpha x$ for all $x>-1$.
(b) For $x>0, e \ln x \leq x$.
10. Let $f:[a, b] \rightarrow \mathbb{R}$ be differentiable and $a \geq 0$. Using Cauchy mean value theorem, show that there exist $c_{1}, c_{2} \in(a, b)$ such that $\frac{f^{\prime}\left(\overline{c_{1}}\right)}{a+b}=\frac{f^{\prime}\left(c_{2}\right)}{2 c_{2}}$.
11. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be such that $f^{\prime \prime}(c)$ exists at some $c \in \mathbb{R}$. Using L'Hospital rule, show that

$$
\lim _{h \rightarrow 0} \frac{f(c+h)-2 f(c)+f(c-h)}{h^{2}}=f^{\prime \prime}(c)
$$

Show with an example that if the above limit exists then $f^{\prime \prime}(c)$ may not exist.
12. (*) Let $f:[a, b] \rightarrow \mathbb{R}$ be differentiable. If $f^{\prime}(x) \neq 0$ for all $x \in[a, b]$, then show that either $f^{\prime}(x) \geq 0$ for all $x \in[a, b]$ or $f^{\prime}(x) \leq 0$ for all $x \in[a, b]$.
13. (*) Let $f:[a, b] \rightarrow \mathbb{R}$ be differentiable and $\alpha \in \mathbb{R}$ be such that $f^{\prime}(a)<\alpha<f^{\prime}(b)$. Define $g(x)=f(x)-\alpha x$ for all $x \in[a, b]$.
(a) Using the fact that $g^{\prime}(a)<0$ and $g^{\prime}(b)>0$, show that the condition $g^{\prime}(x) \neq 0$ for all $x \in[a, b]$ leads to a contradiction.
(b) Show that there exists $c \in[a, b]$ such that $f^{\prime}(c)=\alpha$.
(c) From (b), conclude that if a function f is differentiable at every point of an interval $[a, b]$, then its derivative f^{\prime} has the IVP on $[a, b]$.

1. (a) Let $x>0$. By the MVT there exists $c \in(0, x)$ such that $e^{x}-e^{0}=e^{c}(x-0)$. This implies that $e^{x} \geq 1+x$. The proof is similar for the case $x<0$.
(b) By the MVT, for $f(x)=\sqrt{x}$, there exists $c \in(n, n+1)$ such that $\sqrt{n+1}-\sqrt{n}=\frac{1}{2 \sqrt{c}}$.
(c) By the MVT, there exists $c \in(1, x)$ such that $\ln x-\ln 1=\frac{1}{c}(x-1)$.
2. If so, then by the MVT there exits $c \in(0,2)$ such that $5=f(2)-f(0)=2 f^{\prime}(c)$.
3. Suppose $f\left(c_{1}\right)=c_{1}$ and $f\left(c_{2}\right)=c_{2}$ for some $c_{1}, c_{2} \in[0,1]$ and $c_{1} \neq c_{2}$. Then by the MVT, there exists $c_{0} \in(0,1)$ such that $c_{2}-c_{1}=f\left(c_{2}\right)-f\left(c_{1}\right)=f^{\prime}\left(c_{0}\right)\left(c_{2}-c_{1}\right)$; i.e., $f^{\prime}\left(c_{0}\right)=1$.
4. Note that, for some $c,\left|a_{n+2}-a_{n+1}\right|=\left|f\left(a_{n+1}\right)-f\left(a_{n}\right)\right|=\left|f^{\prime}(c)\right|\left|a_{n+1}-a_{n}\right|<\alpha\left|a_{n+1}-a_{n}\right|$. The sequence satisfies the Cauchy criterion and hence it converges.
5. Using the MVT on $[0, a]$ and $[a, 1]$, obtain $b \in(0, a)$ and $c \in(a, 1)$ such that $\frac{f(a)-f(0)}{a-0}=$ $f^{\prime}(b)$ and $\frac{f(1)-f(a)}{1-a}=f^{\prime}(c)$. Note that $f^{\prime}(b)=f^{\prime}(c)$ because they are slopes of the same chord. By Rolle's theorem there exists $x_{0} \in(b, c)$ such that $f^{\prime \prime}\left(x_{0}\right)=0$.
6. For every $x>0$, by the MVT, there exists $c_{x} \in(0, x)$ such that $\frac{f(x)-f(0)}{x}=f^{\prime}\left(c_{x}\right)$. Now $f^{\prime}(0)=\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x}=\lim _{x \rightarrow 0} f^{\prime}\left(c_{x}\right)=\lim _{c_{x} \rightarrow 0} f^{\prime}\left(c_{x}\right)=\alpha$.
7. For $x \in(0,1)$, by the MVT, there exists x_{1} such that $0<x_{1}<x$ and $f(x)=f^{\prime}\left(x_{1}\right) x$. This implies that $|f(x)| \leq x\left|f\left(x_{1}\right)\right|$. Similarly there exists x_{2} such that $0<x_{2}<x_{1}$ and $\left|f\left(x_{1}\right)\right| \leq x_{1}\left|f\left(x_{2}\right)\right|$. Therefore $|f(x)| \leq x^{2}\left|f\left(x_{2}\right)\right|$. Find a sequence $\left(x_{n}\right)$ in $(0,1)$ such that $|f(x)| \leq x^{n}\left|f\left(x_{n}\right)\right|$. Since f is bounded on $[0,1], x^{n}\left|f\left(x_{n}\right)\right| \rightarrow 0$. Hence $f(x)=0$.
8. Note that $g^{\prime}(x)=\frac{x f^{\prime}(x)-f(x)}{x^{2}}=\frac{f^{\prime}(x)-\frac{f(x)}{x}}{x}$. Observe that, by the MVT, $\frac{f(x)}{x}=f^{\prime}\left(c_{x}\right)$ for some $c_{x} \in(0, x)$. Since f^{\prime} is increasing, $g^{\prime}(x) \geq 0$. Hence g is increasing.
9. (a) Let $\alpha>1$ and $f(x)=(1+x)^{\alpha}-(1+\alpha x)$ on $(-1, \infty)$. Therefore $f^{\prime}(x) \leq 0$ on $(-1,0]$ and $f^{\prime}(x) \geq 0$ on $[0, \infty)$. Hence $f(x) \geq f(0)=0$ on $(-1,0]$ and $f(x) \geq f(0)=0$ on $[0, \infty)$. Therefore $f(x) \geq 0$ on $(-1, \infty)$.
(b) Define $f(x)=x-e \ln x$ on $(0, \infty)$. Then $f^{\prime}(x)=\frac{x-e}{x}$. Therefore $f^{\prime}(x)>0$ on (e, ∞) and $f^{\prime}(x)<0$ on $(0, e)$. Hence $f(x)>f(e)$ for all $x \in(0, \infty)$ and $x \neq e$.
10. Apply Cauchy MVT to $f(x)$ and $g_{1}(x)=x$. Again apply to $f(x)$ and $g_{2}(x)=x^{2}$.
11. Since $f^{\prime \prime}(c)$ exists there exists a $\delta>0$ such that $f^{\prime}(x)$ exists on $(c-\delta, c+\delta)$. Therefore by L'Hospital rule, the given limit is equal to $\lim _{h \rightarrow 0} \frac{f^{\prime}(c+h)-f^{\prime}(c-h)}{h^{2}}$ if it exists. But $\lim _{h \rightarrow 0} \frac{f^{\prime}(c+h)-f^{\prime}(c-h)}{2 h}=\frac{1}{2}\left[\lim _{h \rightarrow 0} \frac{f^{\prime}(c+h)-f^{\prime}(c)}{h}+\lim _{h \rightarrow 0} \frac{f^{\prime}(c-h)-f^{\prime}(c)}{-h}\right]=\frac{1}{2}\left[f^{\prime \prime}(c)+f^{\prime \prime}(c)\right]$. Let $f(x)=1$ on $(0, \infty), f(0)=0$ and $f(x)=-1$ on $(-\infty, 0)$. Then f is not continuous at 0 hence $f^{\prime \prime}(0)$ does not exist. It can be easily verified that the limit given in the question exists.
12. Since f is one-one, it either strictly increasing or strictly decreasing (see Problem 15 of Practice Problems 5). Apply the definition of f^{\prime} to show that either $f^{\prime}(x) \geq 0$ for all $x \in[a, b]$ or $f^{\prime}(x) \leq 0$ for all $x \in[a, b]$.
13. (a) Follows from Problem 12.
(b) Trivial.
(c) Trivial.
