
Practice Problems 8 : Fixed point iteration method and Newton’s method

1. Let g : R→ R be differentiable and α ∈ R be such that |g′(x)| ≤ α < 1 for all x ∈ R.

(a) Show that the sequence generated by the fixed point iteration method for g converges
to a fixed point of g for any starting value x0 ∈ R.

(b) Show that g has a unique fixed point.

2. Let x0 ∈ R. Using the fixed point iteration method generate a sequence of approximate
solutions of the equation x− 1

2 sinx = 1 for the starting value x0.

3. Let g : [0, 1] → [0, 1] be defined by g(x) = 1
1+x2 . Let (xn) be the sequence generated by

the fixed point iteration method for g with the starting value x0 = 1. Show that (xn)
converges.

4. Let f be a differentiable function on R (or on [a, b]). Suppose that F (x) = x − f(x)
f ′(x) is

defined for all x ∈ R (or for all x ∈ [a, b]).

(a) Show that a point x ∈ R (or x ∈ [a, b] ) is a solution of the equation f(x) = 0 if and
only if x is a fixed point of F .

(b) Let x0 ∈ R (or x0 ∈ [a, b]) and xn+1 = F (xn), n = 0, 1, 2, .... Show that if (f ′(xn)) is
bounded and (xn) converges to some x then f(x) = 0.

5. Let f(x) = e−
1
x2 if x 6= 0 and f(0) = 0. Suppose that 0 < x0 < 1 and (xn) be the sequence

generated by Newton’s method with the starting value x0. Show that (xn) converges.

6. Let f(x) = 3x
1
3 . Let x0 > 0 and (xn) be the sequence generated by Newton’s method.

Show that (xn) oscillates and is unbounded.

7. Let f : [−10, 10]→ R be defined by

f(x) =

{ √
x− 1 if x ≥ 1
−
√

1− x if x < 1.

Let x0 6= 1 and (xn) be the sequence generated by Newton’s method with the starting
value x0. Show that xn = x0 if n is even and xn = 2− x0 if n is odd.

8. Let f : [a, b] → R be differentiable and f ′(x) 6= 0 for all x ∈ [a, b]. Define F by F (x) =

x− f(x)
f ′(x) for all x ∈ [a, b]. Suppose that F (x) ∈ [a, b] for all x ∈ [a, b].

(a) Suppose that f ′′ exists and for all x ∈ [a, b] and∣∣∣∣f(x)f ′′(x)

[f ′(x)]2

∣∣∣∣ ≤ α < 1

for some α ∈ R. Show that the sequence (xn), generated by Newton’s Algorithm i.e.,
defined by xn+1 = F (xn), converges for any starting value x0 ∈ [a, b].

(b) Let f(x) = (x − 1)2 and x0 ∈ [0, 2]. Show that the sequence generated by Newton’s
method converges to 1 for the starting value x0.

(c) Let f(x) = x2 − 7 and x0 ∈ [2, 7]. Show that the sequence generated by Newton’s
method converges to

√
7 for the starting value x0.



9. (*) Let f : [a, b] → [a, b] be continuous and ` be a fixed point of f . Suppose that f is
differentiable on (a, b) and |f ′(x)| < 1 for all x ∈ (a, b). Let x0 ∈ [a, b] and xn+1 = f(xn)
for n = 0, 1, 2, ....

(a) Show that f has a unique fixed point.

(b) Show that |xn+1 − `| ≤ |xn − `| for all n ∈ N.

(c) If (xnk
) is a subsequence of (xn), show that |xnk+1

− `| ≤ |xnk+1 − `| ≤ |xnk
− `| for

all k ∈ N.

(d) If a subsequence (xnk
) of (xn) converges to some x0, show that x0 = `.

(e) Show that xn → `.

(f) Show that for f(x) = x2

2 , a = 0 and b = 1 the sequence (xn) converges.



Practice Problems 8: Hints/Solutions

1. (a) Suppose xn+1 = g(xn). Then, by Problem 4 of Practice Problem 7, (xn) converges.
If xn → x, the by continuity of g, x = g(x).

(b) There is a fixed point of g by (a). For uniqueness see the solution of Problem 3 of
Practice Problems 7.

2. Write x = g(x) where g(x) = 1 + 1
2 sinx and note that |g′(x)| ≤ 1

2 < 1 for all x ∈ R. By
Problem 1, the sequence (xn) defined by xn+1 = g(xn) converges to a fixed point of g.
Since a fixed point of g is a solution of x− 1

2 sinx = 1, the elements x′ns are approximate
solutions.

3. Observe that g : [0, 1] → [0, 1] and |g′(x)| = 2x
(1+x2)2

achieves its maximum at x = 1√
3

on

[0, 1]. Therefore |g′(x)| ≤ 9
8
√
3
< 1 for all x ∈ [0, 1]. Hence by Theorem 8.1, the sequence

(xn) converges.

4. (a) Trivial.

(b) Note that f ′(xn)(xn+1 − xn) = f(xn). If xn → x then f(xn)→ 0. Hence f(x) = 0.

5. For f , xn+1 = xn − f(xn)
f ′(xn)

= xn − x3
n
2 . Then (xn) is decreasing and bounded below.

6. In this case, xn+1 = xn − f(xn)
f ′(xn)

= −2xn. Therefore (xn) is unbounded.

7. For given f , xn+1 = xn − f(xn)
f ′(xn)

= 2− xn. This implies the answer.

8. (a) Observe that F ′(x) =
∣∣∣f(x)f ′′(x)

[f ′(x)]2

∣∣∣. Apply Theorem 8.1.

(b) The function F (x) = x− f(x)
f ′(x) = 1

2(x+ 1) and F : [0, 2]→ [0, 2]. Moreover |F ′(x)| =∣∣∣f(x)f ′′(x)
[f ′(x)]2

∣∣∣ = 1
2 = α < 1 ∀ x ∈ [0, 2]. So the problem follows from (a) and Problem 4.

(c) The function F (x) = x− f(x)
f ′(x) = x

2 + 7
2x . It is shown in Problem 9 of Practice Problems

2 that the sequence (xn) defined by xn+1 = 1
2

(
xn + 7

xn

)
, converges.

The problem can also be solved using (a) as follows. By finding the maximum and
minimum values of the function F (x) on [2, 7] or otherwise, verify that F : [2, 7] →
[2, 7]. Again by finding the maximum and minimum values of the function F ′(x)

or otherwise, verify that |F ′(x)| =
∣∣∣f(x)f ′′(x)

[f ′(x)]2

∣∣∣ ≤ 3
7 for all x ∈ [2, 7]. Therefore the

problem follows from (a) and Problem 4.

9. (a) See the solution of Problem 3 of Practice Problems 7 for uniqueness.

(b) By the mean value theorem |xn+1 − `| = |f(xn)− f(`)| < |xn − `|.
(c) This follows from (b) and the definition of a subsequence.

(d) Suppose xnk
→ x0 and x0 6= `. Then |xnk+1

− `| → |x0 − `| and |xnk
− `| → |x0 − `|.

It follows from (c) that |xnk+1 − `| → |x0 − `|; i.e., |f(xnk
) − f(`)| → |x0 − `| =

|f(x0) − f(`)|. But by the mean value theorem |f(x0) − f(`)| < |x0 − `| which is a
contradiction.

(e) Follows from (d), Bolzano-Weierstrass Theorem and Problem 8 of Practice Problems
3.

(f) It is easily seen that f : [0, 1] → [0, 1] and |f ′(x)| < 1 for all x ∈ (0, 1). So by (e),
(xn) converges.


