1. Let $h: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $h(x)=f(x) g(x)$ where f and g are non-negative functions. Show that h has a local maximum at a if f and g have a local maximum at a.
2. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x)=(\sin x-\cos x)^{2}$. Find the maximum value of f on \mathbb{R}.
3. Let $f:[-2,0] \rightarrow \mathbb{R}$ be defined by $f(x)=2 x^{3}+2 x^{2}-2 x-1$. Find the maximum and minimum values of f on $[-2,0]$.
4. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be such that $f^{\prime}(x)=14(x-2)(x-3)^{2}(x-4)^{3}(x-5)^{4}, x \in \mathbb{R}$. Find all the points of local maxima and local minima.
5. Let $x_{1}, x_{2}, \ldots, x_{n} \in \mathbb{R}$ and $f(x)=\sqrt{\left(x-x_{1}\right)^{2}+\left(x-x_{2}\right)^{2}+\ldots+\left(x-x_{n}\right)^{2}}, x \in \mathbb{R}$. Find the point of absolute minimum of the function f.
6. Find the points of local maxima and local minima of $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=2 x^{4} e^{-x^{2}}$.
7. (a) Let $\alpha \in \mathbb{R}$. Among all positive real numbers x and y satisfying $x+y=\alpha$, show that the product $x y$ is largest when $x=y=\frac{\alpha}{2}$.
(b) Among all rectangles of given perimeter, show that the square has the largest area.
8. (a) Find the point of absolute maximum of the function $f(x)=x^{\frac{1}{x}}$ for $x>0$.
(b) Show that $e^{\pi}>\pi^{e}$.
9. (a) Show that $\frac{\ln a}{a}>\frac{\ln b}{b}$ when $b>a>e$.
(b) For $b>a>e$, show that $a^{b}>b^{a}$.
10. (a) For $x \geq 0$ and $0 \leq p \leq 1$, show that $(1+x)^{p} \leq 1+x^{p}$.
(b) Show that $(a+b)^{p} \leq a^{p}+b^{p}$ for all $0 \leq p \leq 1$ and $a, b>0$.
11. An open-top box with square base is to be made. The volume of the box should be 13500 cm^{2}. Find the width and height of the box that minimize the amount of material to be used.
12. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a twice differentiable function with the following properties:
$f(-1)=4, \quad f(0)=2, \quad f(1)=0, \quad f^{\prime}(x)>0$ for $|x|>1, \quad f^{\prime}(x)<0$ for $|x|<1$, $f^{\prime}(1)=0, \quad f^{\prime}(-1)=0, \quad f^{\prime \prime}(x)<0$ for $x<0$ and $f^{\prime \prime}(x)>0$ for $x>0$.
Sketch the graph of f.
13. Sketch the graphs of the following functions after finding the intervals of decrease/increase, intervals of concavity/convexity, points of local minima/local maxima, points of inflection and asymptotes.
(a) $f(x)=\frac{x^{2}+x-5}{x-1}$
(b) $f(x)=\frac{2 x^{2}-1}{x^{2}-1}$
(c) $f(x)=\frac{x^{2}}{x^{2}+1}$
(d) $f(x)=\frac{2 x^{3}}{x^{2}-4}$
(e) $f(x)=3 x^{4}-8 x^{3}+12$.
14. (a) Let $f:(0, \infty) \rightarrow \mathbb{R}$ be defined by $f(x)=\frac{x^{2}}{x^{3}+200}$. Find the point of maximum of f in $(0, \infty)$.
(b) Let $\left(a_{n}\right)$ be a sequence defined by $a_{n}=\frac{n^{2}}{n^{3}+200}, n \in \mathbb{N}$. Show that the largest term of the sequence $\left(a_{n}\right)$ is a_{7}.
15. (*) Let $f(x)=(x+1) \ln (x+1)-x \ln x-\ln (2 x+1)$ for $x>0$. Show that f is strictly increasing on $(0, \infty)$. Further, show that the sequence $\left(\frac{(n+1)^{n+1}}{n^{n}(2 n+1)}\right)$ is strictly increasing.
16. Find $\delta_{1}>0$ such that $f(a) \geq f(x) \forall x \in\left(a-\delta_{1}, a+\delta_{1}\right)$ and $\delta_{2}>0$ such that $g(a) \geq$ $g(x) \forall x \in\left(a-\delta_{2}, a+\delta_{2}\right)$. Then $h(a) \geq h(x) \forall x \in(a-\delta, a+\delta)$ for $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}$.
17. Since $f(x+2 \pi)=f(x) \forall x \in \mathbb{R}$, i.e., f is periodic with period $2 \pi, \sup \{f(x): x \in \mathbb{R}\}=$ $\sup \{f(x): x \in[0,2 \pi]\}$. Note that, on $(0,2 \pi), f^{\prime}(x)=0$ at $x=\frac{\pi}{4}, \frac{3 \pi}{4}, \frac{5 \pi}{4}$ and $\frac{7 \pi}{4}$. Since f achieves its supremum on $[0,2 \pi]$, the greatest value among the points mentioned above and the end points 0 and 2π is the maximum value of the function. Comparing the values of f at these points, we find that the maximum value of f is 2 .
18. Note that, on $(-2,0), f^{\prime}(x)=0$ only at $x=-1$. Comparing the values of f at $x=-1$ and the end points -2 and 0 , we find that the maximum value of f is 1 and the minimum value is -5 .
19. Observe that f^{\prime} changes sign from positive to negative at $x=2$ and negative to positive at $x=4$. The local maximum is $x=2$ and local minimum is $x=4$.
20. Let $g(x)=\left(x-x_{1}\right)^{2}+\left(x-x_{2}\right)^{2}+\ldots+\left(x-x_{n}\right)^{2}$. Note that the point of minimum of f and g are same. At $x=\frac{x_{1}+x_{2}+\ldots+x_{n}}{n}, g^{\prime}(x)=0$ and $g^{\prime \prime}(x)=2 n>0$. Therefore the point of minimum of f is $\frac{x_{1}+x_{2}+\ldots+x_{n}^{n}}{n}$.
21. Since $f^{\prime}(x)=2 x^{3} e^{-x^{2}}\left(4-2 x^{2}\right), f^{\prime}$ vanishes at $x=-\sqrt{2}, \sqrt{2}, 0$. The sign of f^{\prime} change from + to - at $x=-\sqrt{2}$, from + to - at $x=\sqrt{2}$ and from - to + at $x=0$. Therefore $\sqrt{2}$ and $-\sqrt{2}$ are points of local maxima and 0 is a point of local minimum.
22. (a) If $x+y=\alpha$ then $x y=x(\alpha-x)$. So let $f(x)=\alpha x-x^{2}$. Then $x=\frac{\alpha}{2}$ is the point of maximum of f.
(b) Let α be the perimeter and x and y denote the lengths of the sides of the rectangle. Then $x+y=\frac{\alpha}{2}$. The area is $x y$ which is maximum when $x=y$ by (a).
23. (a) The derivative $f^{\prime}(x)=x^{\frac{1}{x}} \frac{1-\ln x}{x^{2}}$ vanishes only at $x=e$. Since the sign of f^{\prime} changes from positive to negative at $x=e$, the point of maximum is $x=e$.
(b) By (a), $f(e)=e^{\frac{1}{e}}>f(\pi)=\pi^{\frac{1}{\pi}}$. Therefore $\left(e^{\frac{1}{e}}\right)^{e \pi}>\left(\pi^{\frac{1}{\pi}}\right)^{e \pi}$.
24. (a) Let $f(x)=\frac{\ln x}{x}$ for $x>0$. Because $f^{\prime}(x)=\frac{1-\ln x}{x^{2}}<0$ for $x>e, f$ is decreasing on (e, ∞). Therefore $\frac{\ln a}{a}>\frac{\ln b}{b}$ when $b>a>e$.
(b) For $b>a>e$, by (a), $b \ln a>a \ln b$. This implies that $e^{b \ln a}>e^{a \ln b}$; i.e, $e^{\ln a^{b}}>e^{\ln b^{a}}$.
25. (a) Let $f(x)=1+x^{p}-(1+x)^{p}$ for $x \geq 0$. Then $f^{\prime}(x)=p\left[\frac{1}{x^{1-p}}-\frac{1}{(1+x)^{1-p}}\right]>0$ for all $x>0$. This implies that $f(x)>f(0)=0$ for $x>0$.
(b) It is sufficient to show that $\left(\frac{a}{b}+1\right)^{p} \leq\left(\frac{a}{b}\right)^{p}+1$ which follows from (a).
26. Let x be the width of the square base. Then the height of the box is $\frac{13500}{x^{2}}$. Therefore the surface area is $S(x)=x^{2}+4 \frac{13500}{x}$. Hence $x=30$ is the point of minimum of S.
27. See Figure 1 for the graph of f.
28. (a) Note that $f(x)=x+2-\frac{3}{x-1}, f^{\prime}(x)=1+\frac{3}{(x-1)^{2}}$ and $f^{\prime \prime}(x)=\frac{-6}{(x-1)^{3}}$. The asymptotes are $x=1$ and $y=x+2$. The function is increasing on $(-\infty, 1)$ and $(1, \infty)$. The function is convex for $x<1$ and concave for $x>1$. The function has no point of inflection (note that f is not defined at $x=1$). There is no point of local maximum and local minimum. The graph of f is given in Figure 2.
(b) Observe that $f(x)=2+\frac{1}{x^{2}-1}, f^{\prime}(x)=\frac{-2 x}{\left(x^{2}-1\right)^{2}}$ and $f^{\prime \prime}(x)=\frac{2\left(3 x^{2}+1\right)}{\left(x^{2}-1\right)^{3}}$. The asymptotes are $x=1, x=-1$ and $y=2$. The function is increasing on $(-\infty,-1)$ and $(-1,0)$ and decreasing on $(0,1)$ and $(1, \infty)$. The point of local maximum is 0 . The function is convex on $(-\infty, 1)$ and $(1, \infty)$ and concave on $(-1,1)$. There is no point of inflection. See Figure 3 for the graph.
(c) We have $f(x)=1-\frac{1}{x^{2}+1}, f^{\prime}(x)=\frac{2 x}{\left(x^{2}+1\right)^{2}}$ and $f^{\prime \prime}(x)=\frac{2\left(1-3 x^{2}\right)}{\left(x^{2}+1\right)^{3}}$. The asymptote is $y=1$. The function is decreasing on $(-\infty, 0)$ and increasing on $(0, \infty)$. The function is concave on $\left(-\infty,-\frac{1}{\sqrt{3}}\right)$ and $\left(\frac{1}{\sqrt{3}}, \infty\right)$; and convex on $\left(-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$. The points of inflection are $-\frac{1}{\sqrt{3}}$ and $\frac{1}{\sqrt{3}}$. The function has local minimum at $x=0$. For the graph see Figure 4.
(d) Note that $f(x)=2 x+\frac{8 x}{x^{2}-4}, f^{\prime}(x)=\frac{2 x^{2}\left(x^{2}-12\right)}{\left(x^{2}-4\right)^{2}}$ and $f^{\prime \prime}(x)=\frac{16 x\left(x^{2}+12\right)}{\left(x^{2}-4\right)^{3}}$. Then $x=2$, $x=-2$ and $y=2 x$ are the asymptotes. The function is increasing on $(-\infty,-2 \sqrt{3})$ and $(2 \sqrt{3}, \infty)$. The function is decreasing on $(-2 \sqrt{3},-2),(-2,2)$ and $(2,2 \sqrt{3})$. The function is convex on $(-2,0)$ and $(2, \infty)$ and concave on $(-\infty,-2)$ and $(0,2)$. The point of inflection is 0 . See Figure 5 for the graph.
(e) Here $f^{\prime}(x)=12 x^{2}(x-2)$ and $f^{\prime \prime}(x)=12 x(3 x-4)$. Therefore f is decreasing on $(-\infty, 2)$ and increasing on $(2, \infty)$. There is no asymptote. The point of local minimum is 2 . The function is convex on $(-\infty, 0)$ and $\left(\frac{4}{3}, \infty\right)$ and concave on $\left(0, \frac{4}{3}\right)$. The points of inflections are 0 and $\frac{4}{3}$. See the graph in Figure 6.
29. (a) Since $f^{\prime}(x)=\frac{x\left(400-x^{3}\right)}{\left(x^{3}+200\right)^{2}}, f$ is increasing on $\left(0,400^{\frac{1}{3}}\right)$ and decreasing on $\left(400^{\frac{1}{3}}, \infty\right)$. Therefore, the point of maximum is $400^{\frac{1}{3}}$.
(b) We will use (a). Note that $7<400^{\frac{1}{3}}<8$. Thus the largest term of the sequence can be either a_{7} or a_{8}. But $a_{7}=\frac{49}{543}>a_{8}=\frac{8}{89}$. Therefore a_{7} is the largest term.
30. Note that $f^{\prime}(x)=\ln (x+1)-\ln x-\frac{2}{2 x+1}$ and $f^{\prime \prime}(x)=\frac{1}{x+1}-\frac{1}{x}+\frac{4}{(2 x+1)^{2}}$. Since $f^{\prime \prime}(x)<0$ on $(0, \infty), f^{\prime}$ is decreasing. Write $f^{\prime}(x)=\ln \left(1+\frac{1}{x}\right)-\frac{2}{2 x+1}$ and observe that $f^{\prime}(x) \rightarrow 0$ as $x \rightarrow \infty$. Therefore $f^{\prime}(x)>0$ for all $x>0$. It is easy to see that $\ln a_{n}=f(n)$. Since $f(n+1)>f(n), \ln \left(a_{n+1}\right)>\ln \left(a_{n}\right)$. Therefore $e^{\ln \left(a_{n+1}\right)}>e^{\ln \left(a_{n}\right)}$ and hence $a_{n+1}>a_{n}$.
