Practice Problems 9: Tests for maxima and minima, Curve sketching

- 1. Let $h: \mathbb{R} \to \mathbb{R}$ be defined by h(x) = f(x)g(x) where f and g are non-negative functions. Show that h has a local maximum at a if f and g have a local maximum at a.
- 2. Let $f: \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = (\sin x \cos x)^2$. Find the maximum value of f on \mathbb{R} .
- 3. Let $f: [-2,0] \to \mathbb{R}$ be defined by $f(x) = 2x^3 + 2x^2 2x 1$. Find the maximum and minimum values of f on [-2, 0].
- 4. Let $f: \mathbb{R} \to \mathbb{R}$ be such that $f'(x) = 14(x-2)(x-3)^2(x-4)^3(x-5)^4$, $x \in \mathbb{R}$. Find all the points of local maxima and local minima.
- 5. Let $x_1, x_2, ..., x_n \in \mathbb{R}$ and $f(x) = \sqrt{(x x_1)^2 + (x x_2)^2 + ... + (x x_n)^2}$, $x \in \mathbb{R}$. Find the point of absolute minimum of the function f.
- 6. Find the points of local maxima and local minima of $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = 2x^4e^{-x^2}$.
- 7. (a) Let $\alpha \in \mathbb{R}$. Among all positive real numbers x and y satisfying $x + y = \alpha$, show that the product xy is largest when $x = y = \frac{\alpha}{2}$.
 - (b) Among all rectangles of given perimeter, show that the square has the largest area.
- 8. (a) Find the point of absolute maximum of the function $f(x) = x^{\frac{1}{x}}$ for x > 0.
 - (b) Show that $e^{\pi} > \pi^e$.
- 9. (a) Show that $\frac{\ln a}{a} > \frac{\ln b}{b}$ when b > a > e. (b) For b > a > e, show that $a^b > b^a$.
- 10. (a) For $x \ge 0$ and $0 \le p \le 1$, show that $(1+x)^p \le 1 + x^p$.
 - (b) Show that $(a+b)^p \le a^p + b^p$ for all $0 \le p \le 1$ and a, b > 0.
- 11. An open-top box with square base is to be made. The volume of the box should be 13500 cm². Find the width and height of the box that minimize the amount of material to be used.
- 12. Let $f: \mathbb{R} \to \mathbb{R}$ be a twice differentiable function with the following properties:

$$f(-1) = 4$$
, $f(0) = 2$, $f(1) = 0$, $f'(x) > 0$ for $|x| > 1$, $f'(x) < 0$ for $|x| < 1$, $f'(1) = 0$, $f'(-1) = 0$, $f''(x) < 0$ for $x < 0$ and $f''(x) > 0$ for $x > 0$.

Sketch the graph of f.

- 13. Sketch the graphs of the following functions after finding the intervals of decrease/increase, intervals of concavity/convexity, points of local minima/local maxima, points of inflection and asymptotes.
 - (a) $f(x) = \frac{x^2 + x 5}{x 1}$
- (b) $f(x) = \frac{2x^2 1}{x^2 1}$ (c) $f(x) = \frac{x^2}{x^2 + 1}$

- (d) $f(x) = \frac{2x^3}{x^2-4}$
- (e) $f(x) = 3x^4 8x^3 + 12$.
- 14. (a) Let $f:(0,\infty)\to\mathbb{R}$ be defined by $f(x)=\frac{x^2}{x^3+200}$. Find the point of maximum of f in
 - (b) Let (a_n) be a sequence defined by $a_n = \frac{n^2}{n^3 + 200}$, $n \in \mathbb{N}$. Show that the largest term of the sequence (a_n) is a_7 .
- 15. (*) Let $f(x) = (x+1)\ln(x+1) x\ln x \ln(2x+1)$ for x > 0. Show that f is strictly increasing on $(0,\infty)$. Further, show that the sequence $\left(\frac{(n+1)^{n+1}}{n^n(2n+1)}\right)$ is strictly increasing.

Practice Problems 9: Hints/Solutions

- 1. Find $\delta_1 > 0$ such that $f(a) \geq f(x) \ \forall \ x \in (a \delta_1, a + \delta_1)$ and $\delta_2 > 0$ such that $g(a) \geq g(x) \ \forall \ x \in (a \delta_2, a + \delta_2)$. Then $h(a) \geq h(x) \ \forall \ x \in (a \delta, a + \delta)$ for $\delta = \min\{\delta_1, \delta_2\}$.
- 2. Since $f(x + 2\pi) = f(x) \ \forall \ x \in \mathbb{R}$, i.e., f is periodic with period 2π , $\sup\{f(x) : x \in \mathbb{R}\} = \sup\{f(x) : x \in [0, 2\pi]\}$. Note that, on $(0, 2\pi)$, f'(x) = 0 at $x = \frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}$ and $\frac{7\pi}{4}$. Since f achieves its supremum on $[0, 2\pi]$, the greatest value among the points mentioned above and the end points 0 and 2π is the maximum value of the function. Comparing the values of f at these points, we find that the maximum value of f is 2.
- 3. Note that, on (-2,0), f'(x) = 0 only at x = -1. Comparing the values of f at x = -1 and the end points -2 and 0, we find that the maximum value of f is 1 and the minimum value is -5.
- 4. Observe that f' changes sign from positive to negative at x = 2 and negative to positive at x = 4. The local maximum is x = 2 and local minimum is x = 4.
- 5. Let $g(x) = (x x_1)^2 + (x x_2)^2 + \dots + (x x_n)^2$. Note that the point of minimum of f and g are same. At $x = \frac{x_1 + x_2 + \dots + x_n}{n}$, g'(x) = 0 and g''(x) = 2n > 0. Therefore the point of minimum of f is $\frac{x_1 + x_2 + \dots + x_n}{n}$.
- 6. Since $f'(x) = 2x^3e^{-x^2}(4-2x^2)$, f' vanishes at $x = -\sqrt{2}$, $\sqrt{2}$, 0. The sign of f' change from + to at $x = -\sqrt{2}$, from + to at $x = \sqrt{2}$ and from to + at x = 0. Therefore $\sqrt{2}$ and $-\sqrt{2}$ are points of local maxima and 0 is a point of local minimum.
- 7. (a) If $x + y = \alpha$ then $xy = x(\alpha x)$. So let $f(x) = \alpha x x^2$. Then $x = \frac{\alpha}{2}$ is the point of maximum of f.
 - (b) Let α be the perimeter and x and y denote the lengths of the sides of the rectangle. Then $x+y=\frac{\alpha}{2}$. The area is xy which is maximum when x=y by (a).
- 8. (a) The derivative $f'(x) = x^{\frac{1}{x}} \frac{1-\ln x}{x^2}$ vanishes only at x = e. Since the sign of f' changes from positive to negative at x = e, the point of maximum is x = e.
 - (b) By (a), $f(e) = e^{\frac{1}{e}} > f(\pi) = \pi^{\frac{1}{\pi}}$. Therefore $(e^{\frac{1}{e}})^{e\pi} > (\pi^{\frac{1}{\pi}})^{e\pi}$.
- 9. (a) Let $f(x) = \frac{\ln x}{x}$ for x > 0. Because $f'(x) = \frac{1 \ln x}{x^2} < 0$ for x > e, f is decreasing on (e, ∞) . Therefore $\frac{\ln a}{a} > \frac{\ln b}{b}$ when b > a > e.
 - (b) For b > a > e, by (a), $b \ln a > a \ln b$. This implies that $e^{b \ln a} > e^{a \ln b}$; i.e, $e^{\ln a^b} > e^{\ln b^a}$.
- 10. (a) Let $f(x) = 1 + x^p (1+x)^p$ for $x \ge 0$. Then $f'(x) = p\left[\frac{1}{x^{1-p}} \frac{1}{(1+x)^{1-p}}\right] > 0$ for all x > 0. This implies that f(x) > f(0) = 0 for x > 0.
 - (b) It is sufficient to show that $(\frac{a}{b}+1)^p \leq (\frac{a}{b})^p + 1$ which follows from (a).
- 11. Let x be the width of the square base. Then the height of the box is $\frac{13500}{x^2}$. Therefore the surface area is $S(x) = x^2 + 4\frac{13500}{x}$. Hence x = 30 is the point of minimum of S.
- 12. See Figure 1 for the graph of f.
- 13. (a) Note that $f(x) = x + 2 \frac{3}{x-1}$, $f'(x) = 1 + \frac{3}{(x-1)^2}$ and $f''(x) = \frac{-6}{(x-1)^3}$. The asymptotes are x = 1 and y = x + 2. The function is increasing on $(-\infty, 1)$ and $(1, \infty)$. The function is convex for x < 1 and concave for x > 1. The function has no point of inflection (note that f is not defined at x = 1). There is no point of local maximum and local minimum. The graph of f is given in Figure 2.

- (b) Observe that $f(x) = 2 + \frac{1}{x^2 1}$, $f'(x) = \frac{-2x}{(x^2 1)^2}$ and $f''(x) = \frac{2(3x^2 + 1)}{(x^2 1)^3}$. The asymptotes are x = 1, x = -1 and y = 2. The function is increasing on $(-\infty, -1)$ and (-1, 0) and decreasing on (0, 1) and $(1, \infty)$. The point of local maximum is 0. The function is convex on $(-\infty, 1)$ and $(1, \infty)$ and concave on (-1, 1). There is no point of inflection. See Figure 3 for the graph.
- (c) We have $f(x)=1-\frac{1}{x^2+1},\ f'(x)=\frac{2x}{(x^2+1)^2}$ and $f''(x)=\frac{2(1-3x^2)}{(x^2+1)^3}$. The asymptote is y=1. The function is decreasing on $(-\infty,0)$ and increasing on $(0,\infty)$. The function is concave on $(-\infty,-\frac{1}{\sqrt{3}})$ and $(\frac{1}{\sqrt{3}},\infty)$; and convex on $(-\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}})$. The points of inflection are $-\frac{1}{\sqrt{3}}$ and $\frac{1}{\sqrt{3}}$. The function has local minimum at x=0. For the graph see Figure 4.
- (d) Note that $f(x) = 2x + \frac{8x}{x^2 4}$, $f'(x) = \frac{2x^2(x^2 12)}{(x^2 4)^2}$ and $f''(x) = \frac{16x(x^2 + 12)}{(x^2 4)^3}$. Then x = 2, x = -2 and y = 2x are the asymptotes. The function is increasing on $(-\infty, -2\sqrt{3})$ and $(2\sqrt{3}, \infty)$. The function is decreasing on $(-2\sqrt{3}, -2)$, (-2, 2) and $(2, 2\sqrt{3})$. The function is convex on (-2, 0) and $(2, \infty)$ and concave on $(-\infty, -2)$ and (0, 2). The point of inflection is 0. See Figure 5 for the graph.
- (e) Here $f'(x) = 12x^2(x-2)$ and f''(x) = 12x(3x-4). Therefore f is decreasing on $(-\infty, 2)$ and increasing on $(2, \infty)$. There is no asymptote. The point of local minimum is 2. The function is convex on $(-\infty, 0)$ and $(\frac{4}{3}, \infty)$ and concave on $(0, \frac{4}{3})$. The points of inflections are 0 and $\frac{4}{3}$. See the graph in Figure 6.
- 14. (a) Since $f'(x) = \frac{x(400-x^3)}{(x^3+200)^2}$, f is increasing on $(0,400^{\frac{1}{3}})$ and decreasing on $(400^{\frac{1}{3}},\infty)$. Therefore, the point of maximum is $400^{\frac{1}{3}}$.
 - (b) We will use (a). Note that $7 < 400^{\frac{1}{3}} < 8$. Thus the largest term of the sequence can be either a_7 or a_8 . But $a_7 = \frac{49}{543} > a_8 = \frac{8}{89}$. Therefore a_7 is the largest term.
- 15. Note that $f'(x) = \ln(x+1) \ln x \frac{2}{2x+1}$ and $f''(x) = \frac{1}{x+1} \frac{1}{x} + \frac{4}{(2x+1)^2}$. Since f''(x) < 0 on $(0, \infty)$, f' is decreasing. Write $f'(x) = \ln(1 + \frac{1}{x}) \frac{2}{2x+1}$ and observe that $f'(x) \to 0$ as $x \to \infty$. Therefore f'(x) > 0 for all x > 0. It is easy to see that $\ln a_n = f(n)$. Since f(n+1) > f(n), $\ln(a_{n+1}) > \ln(a_n)$. Therefore $e^{\ln(a_{n+1})} > e^{\ln(a_n)}$ and hence $a_{n+1} > a_n$.