
EE627 � Term Project : Jul. 2013 Semester

August 12, 2013
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Assigned to : Batch No. 10

TAs Assigned : Waquar Ahmad. He is Available
@ACES 203 MiPS Lab EE Department. email :
wahmad@iitk.ac.in

Objective :

The objective of this project is to build a speaker veri�cation system. A speaker
veri�cation system needs to be built using the NIST2004 database. Experimen-
tal results for speaker veri�cation, in terms of equal error rate (EER) also need
to be provided.

Methodology To Be Followed :

The methodlolgy need to be followed for performing the recogniton experiments
are as follows:

• Building the task grammar (a "language model")

• Feature extraction.

• Model Preparation .

• Model Re-estimation

• Evaluating the recognizer against the test data

• Reporting recognition results
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Database for Training

The 2004 NIST Speaker Recognition evaluation is part of an ongoing series
of yearly evaluations conducted by NIST (National Institute of Standards and
Technology). These evaluations provide an important contribution to the direc-
tion of research e�orts and the calibration of technical capabilities. They are
intended to be of interest to all researchers working on the general problem of
text-independent speaker recognition. To this end the evaluation was designed
to be simple, to focus on core technology issues, to be fully supported, and to be
accessible.NIST has been coordinating Speaker Recognition Evaluations since
1996. Each evaluation begins with the announcement of the o�cial evaluation
plan which clearly states the rules and tasks involved with the evaluation. The
evaluation culminates with a follow-up workshop, where NIST reports the o�cial
results and researchers share in their �ndings.The data consists of conversational
telephone speech collected by the LDC.Additional documentation is available
from the NIST website at http://www.itl.nist.gov/iad/mig/tests/sre/2004/index.html.The
NIST 2004 database is available at MiPS Lab. Please contact the TA assigned
for the same.

Tools To Be Used

The Tools to be used to implement this term project is the HTK Toolkit and
matlab. The details of download, installation, and usage are available at the
following URL :

http://htk.eng.cam.ac.uk/

Deliverables/ Submissions

The deliverables or submission procedures for the term project are as follows:

• Presentations and Report : Two set of presentations is required for every
batch in this term project. The �rst presentation will be scheduled before
mid sem and the second presentation will be scheduled before end sem.
The marks will be distributed separately for two presentation. Addition-
ally a report needs to be submitted detailing the project.

• System Demo in real time : The demonstration of the project is need to
be carried out by each batch. The demonstration includes the real time
presentation of the working model for recognition system.

• Code/script submissions : The code or script has to be submitted by each
batch which will include complete details of the project.
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Other Useful Links

• Matlab Code : speaker-recognition.googlecode.com/�les/project.pdf
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SPEAKER IDENTIFICATION:SPEAKER IDENTIFICATION:
A DEMONSTRATION USING MATLABA DEMONSTRATION USING MATLAB

Anil Alexander, Andrzej Drygajlo 

Swiss Federal Institute of Technology, Lausanne 
Signal Processing Institute 

Demo and description available at:
http://scgwww.epfl.ch/courses/Biometrics-Lectures-2005-2006-pdf/03-Biometrics-Exercise-3-2005/
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Problem 
Unknown Speaker 
requesting access

Which of the speakers in the recognition
system is the unknown speaker ?

?

Speakers known to the 
recognition system
Speakers known to the 
recognition system
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What needs to be done ?
• To identify the voices of the unknown speaker we need to:

– Extract characteristic features of the speech of the known 
speakers

– Create models of the features of the known speakers
– Compare the features from the unknown speaker’s 

utterances with the statistical models of the voices of the 
speakers known to the system.

– Make decision when we have identified that test utterance 
belongs to a certain speaker. 
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A speaker recognition 
system

• We can construct a speaker recognition system using some 
of the tools

– Feature extraction using MFCC (Mel Frequency Cepstral 
Coefficients)

– Statistical modeling using Gaussian Mixture Modeling 
(Expectation-Maximization algorithm)  
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Outline of tasks to be 
performed

The following steps have to be done:
• Read in the training and testing files
• Feature extraction for both the training and testing files
• Statistical modeling of the features of the training files
• Testing each of the test files with the models created
• Choosing the ‘best candidate’ test file corresponding to a 

training model, and verifying whether both of them came from 
the same speaker.
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Outline
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Matlab tools
• In order to make a simple speaker recognition system, you 

can use a few publicly available tools
– Feature Extraction using Mel Frequency Cepstral 

Coefficients (MFCC) available from Voicebox, Imperial 
College, England

http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html
– Statistical modeling using Gaussian Mixture Modeling 

(GMM), from our lab’s website
http://scgwww.epfl.ch/matlab/student_labs/2004/labs/Lab08_

Speaker_Recognition/
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Read in training and testing files

• We can use the Matlab function wavread

WAVREAD Read Microsoft WAVE (".wav") sound file.  

From Matlab help:
Y=WAVREAD(FILE) reads a WAVE file specified by the string 

FILE, returning the sampled data in Y.

Ex: training_data1=wavread('01_train.wav');



11/4/2005 Speech Processing and Biometrics 
Group

9

Feature extraction
• For MFCC feature extraction, we use the melcepst function 

from Voicebox.

• MELCEPST Calculate the mel cepstrum of a signal  
Simple use: c=melcepst(s,fs) % calculate mel cepstrum with 

12 coefs, 256 sample frames

Ex: training_features1=melcepst(training_data1,8000);
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Statistical modeling
• For statistical modeling we use the ‘gmm_evaluate’ function 

Performs statistical modeling of the features, using the Gaussian 
Mixture Modeling algorithm, and returns the means, variances and
weights of the models created.

[mu,sigma,c]=gmm_estimate(X,M,<iT,mu,sigm,c,Vm>)
X   : the column by column data matrix (LxT)
M   : number of gaussians
iT : number of iterations, by default 10

Ex:[mu_train1,sigma_train1,c_train1]=gmm_estimate(training_features,
No_of_Gaussians);
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Statistical modeling

0 5 10
0

0.5

1

1.5

−1 0 1
0

1

2

3

4

−1 0 1
0

2

4

6

−1 0 1
0

2

4

6

8

−1 0 1
0

2

4

6

−1 0 1
0

2

4

6

−0.5 0 0.5
0

2

4

6

−0.5 0 0.5
0

2

4

6

−0.5 0 0.5
0

2

4

6

8

−0.5 0 0.5
0

5

10

15

−0.5 0 0.5
0

5

10

15

20

−0.5 0 0.5
0

10

20

30

 

0 5 10
0

0.2

0.4

0.6

−2 0 2
0

1

2

3

−1 0 1
0

1

2

3

−2 0 2
0

1

2

3

4

−2 0 2
0

1

2

3

−1 0 1
0

1

2

3

4

−1 0 1
0

1

2

3

4

−0.5 0 0.5
0

1

2

3

4

−1 0 1
0

2

4

6

−0.5 0 0.5
0

2

4

6

8

−0.5 0 0.5
0

5

10

15

−0.5 0 0.5
0

5

10

15

GMM Based Modeling of 12  RASTA PLP Coefficients 

Model of the 
features of the 

speaker

Features of the 
speaker 



11/4/2005 Speech Processing and Biometrics 
Group

12

Testing
• For testing, we use the lmultigauss function.
[lYM,lY]=lmultigauss(X,mu,sigma,c)

computes multigaussian log-likelihood, using the test data (X), 
the means (mu), the diagonal covariance matrix of the model 
(sigma) and the matrix representing the weights of each of the 
models (c).  

Ex: 
[lYM,lY]=lmultigauss(testing_features1,mu_train1,sigm_train1,
c_train1);
mean(lYM);



11/4/2005 Speech Processing and Biometrics 
Group

13

Unknown Speaker 
requesting access 

The speaker who has obtained 
the maximum score is assigned 
to the unknown speaker

=

Unknown Speaker 
requesting access 

The speaker who has obtained 
the maximum score is assigned 
to the unknown speaker

=

Solution for the problem ?

?8.5 4.5

Scores obtained for the 
models of the speakers

4.8 12

8.5 4.5

Scores obtained for the 
models of the speakers

4.8 12

8.58.5 4.5

Scores obtained for the 
models of the speakers

4.8 12
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Additional resources and 
references

Feature extraction (other possible options)
• Use code for LPC already in Matlab
• RASTA-PLP coefficients from Dan Ellis’ website

– http://www.ee.columbia.edu/~dpwe/resources/matlab/rastamat/

Gaussian Mixture Modeling of the features
• Douglas A. Reynolds, Thomas F. Quatieri, and Robert B. 

Dunn. Speaker verification using adapted Gaussian 
mixture models. Digital Signal Processing, 10(103), 2000. 



SGN-1656 Signal Processing Laboratory

Voice biometrics: Automatic speaker identification

1 General information

In this project work, we build a Matlab program for speaker recognition. There are two
phases: in the first phase – training phase – we learn a statistical model for the spectral char-
acteristics of each speaker in the training data and in the second phase – test phase – we use
the models to identify a speaker of previously unseen test sentences.

The main concepts of this work are frame-wise feature extraction for speech signals (here line
spectral frequencies derived from linear prediction filter coefficients) and classification using
Gaussian mixture models. More information about speech signal processing is available in
SGN-4010 http://www.cs.tut.fi/kurssit/SGN-4010/. Pattern classification is dis-
cussed in more details in SGN-2506 http://www.cs.tut.fi/kurssit/SGN-2506/.

To pass this exercise, you should write the requiredMATLAB codes and a report of the work.
You can include the MATLAB codes in the report as an appendix. Send the report in a pdf
form to hanna.silen@tut.fi by 10.5.2013.

2 Speaker identification based on spectral features

Automatic speaker recognition can be divided into speaker identification and speaker verifi-
cation. The first one refers to the process of finding out who the speaker of a speech segment
is while the latter one refers to the process of checking whether the speaker is who he claims
to be.

In this exercise, we build a MATLAB program for text independent speaker identification
and evaluate its performance for new data. The text-independence means that no attention
is paid to the verbal content message of speech. Instead, we investigate the characteristics of
the speech spectra an model the speaker-specific characteristics using one of the most widely
used approaches in speaker identification, Gaussian mixture model (GMM) based speaker
identification [1]. An extensive overview of the methods for speaker recognition is given in
[2] (available at http://cs.joensuu.fi/pages/tkinnu/webpage).

The recognition process consists of two phases. In the first phase, a training phase, we learn
parameters for the statistical GMM models based on some training material. In the sec-
ond phase, a test phase, the identification accuracy of the learned models is evaluated using
data that was not included in the model training. Both the training and testing phases work
on spectral feature vectors extracted frame-wise from speech waveforms. Line spectral fre-
quency (LSF) coefficients used in this work are derived from linear prediction coefficients
and are described in the following.

2.1 Frame-wise feature extraction

Typically automatic speaker identification (as well as speaker verification, speech recogni-
tion, etc.) approaches rely on the use of some spectral features extracted frame-wise from

http://www.cs.tut.fi/kurssit/SGN-4010/
http://www.cs.tut.fi/kurssit/SGN-2506/
http://cs.joensuu.fi/pages/tkinnu/webpage


audio signals. In the feature extraction, the speech signal is processed in short frames of
20-30 ms in which the speech can be assumed to remain stationary. Typically windowing by
some smooth window, such as Hanning window, is used. For each windowed frame, we
extract a feature vector that is later used as an observation vector in the speaker modeling.

Typical features used in speaker identification are related to the speech spectrum. The com-
monly used examples include mel-frequency cepstral coefficients (MFCCs) as well as linear
prediction (LP) based features such line spectral frequency (LSF) coefficients – MFCCs prob-
ably being the most common in speaker recognition.

In this exercise, we use the LP-based LSFs as frame-wise spectral features in speaker model-
ing and identification. Computation of LSF coefficients starts from LP analysis that is one of
the most important tools in digital speech processing. MATLAB provides a straightforward
conversion between LP and LSF coefficients. Wewill review the estimation of LSF coefficients
next.

Extraction of LSF coefficients

Speech production can be modeled as a source-filter system where a source signal produced
by the vocal cords is filtered by a vocal tract filter with resonances at formant frequencies (for
recap, check http://www.cs.tut.fi/kurssit/SGN-4010/LP_en.pdf). The frequen-
cies of the formants are both phoneme and speaker-specific, the first formants being related
to the phoneme identity while the high-frequency formants being more speaker-dependent.

LP analysis provides a tool for the analysis of the vocal tract characteristics. Vocal tract can
be considered to be pth order all-pole filter 1/A(z):

1

A(z)
=

1

1 + a1z−1... + apz−p
(1)

where the filter coefficients a1 . . . ap are estimated using linear prediction. Figure 1 (a) il-
lustrates the spectrum of the all-pole filter 1/A(z) estimated from a short speech frame from
a signal representing a Finnish vowel y. The thin line represents the amplitude spectrum
(absolute value of discrete Fourier transform, DFT) of the frame.
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Figure 1: LP spectrum (thick line) for a frame extracted from a speech signal and (a) the amplitude spectrum
(thin line) and (b) the LSF values for the same frame.

In MATLAB, LP coefficient of a given order are estimated by the function lpc:

http://www.cs.tut.fi/kurssit/SGN-4010/LP_en.pdf


a = lpc(frame,order); % Estimate LP coefficients

Coefficients of an LP filter have poor interpolation properties: a small change in the coeffi-
cients can even make the all-pole filter 1/A(z) unstable! For speech analysis purposes, LP
polynomial A(z) is often decomposed into line spectral frequencies (LSF). LSFs have good
quantization and interpolation properties and are thus widely used in many speech applica-
tions such as speech coding. The LSF representation of the previous LP spectrum is given in
Figure 1 (b). Again the thick line represents the LP spectrum and the frequency values of the
thin lines represent the LSF coefficient values. As seen in the figure, two closely spaced LSF
coefficients tend to indicate a peak in the LP spectrum.

A more detailed derivation for the estimation of LSF coefficients is given for example in
http://www.cs.tut.fi/sgn/arg/8003102/syn_en.pdf. The basic idea is to decom-
pose the LP polynomial A(z) into two polynomials that have their roots on the unit circle.
The resulting LSF vector Ω corresponding to A(z) (of order p) consists of p angle values (or
equivalently, frequency values)ωi:

Ω = (ω1, ω2, . . . , ωp).

In this exercise, you can use MATLAB’s LP-to-LSF conversion of the function poly2lsf:

x = poly2lsf(a); % Convert LP coefficients into LSF coefficients

Note that the values of vector x are between 0 and π (whereas in the figure the LSF values
are scaled to the range 0 – 8 kHz). In the following, frame-wise LSF vectors ω are used as
observation vectors x in speaker modeling and identification.

2.2 Statistical modeling of speaker characteristics

Speaker modeling with Gaussian mixture models (GMMs) [1] is a classical approach used
in automatic speaker identification. A GMM consists of several Gaussian components rep-
resenting general speaker-specific characteristics. The two phases – modeling (training) and
identification (testing) – are described in the following.

Speaker modeling with GMMs

The most commonly used approach for speaker identification uses Gaussian mixture models
(GMM) to model the characteristics of each speaker’s spectral features. A Gaussian mixture
density p(x|λ) is defined as a sum ofM Gaussian components:

p(x|λ) =

M∑

i=1

piN (x|µi, Σi), (2)

where x is an observation vector of size D × 1, pi is the prior probability or mixing weight

of ith Gaussian component N (x|µi, Σi) and
∑M

i=1 pi = 1. The ith multivariate Gaussian
distribution with mean µi and covariance Σi is defined as:

N (x|µi, Σi) =
1

(2π)D/2|Σi|
1/2
exp

[

−
1

2
(x− µi)

TΣ−1
i (x− µi)

]

. (3)

http://www.cs.tut.fi/sgn/arg/8003102/syn_en.pdf


Here µi is a vector of size D × 1 and Σi a matrix of size D × D. |Σi| is the determinant of Σi.
To decrease the number of model parameters, diagonal covariance matrices with non-zero
values only on the main diagonal are typically used instead of full covariance matrices.

The values for the GMM model parameters λ = {pi, µi, Σi} with i = 1, . . . , M are estimated
based on training data. For a training vector sequence X = {x1, . . . , xT}, the likelihood of X
given the model λ is

p(X|λ) =

T∏

t=1

p(xt|λ). (4)

The likelihood function in (4) is a nonlinear function of λ and we need an iterative expectation
maximization (EM) algorithm [3] to find the values for the parameters in the model λ that
maximize the likelihood function. The details of EM algorithm are omitted here but there is
more information available for instance in the material of SGN-2506. In this work, you can
use an estimation function already available in MATLAB.

In the modeling phase (training phase), the parameters of a speaker-dependent GMM model
λs of (2) are estimated separately for each of the speakers s = {1, . . . , S} in the training ma-
terial. In the simplest case, the model λs is learned only from the training vectors of the sth
speaker. The EM algorithm for the model parameter estimation is implemented also in the
Statistics Toolbox of MATLAB. To estimate the GMM parameters (mixing weights, means,
and diagonal covariances), you can use the following code snippet:

% Xs - Training data of the sth speaker
% M - Number of Gaussian components in the GMM

% Options - Maximum number of EM iterations 100
options = statset(’Display’,’final’,’MaxIter’,100);

speakerModel = gmdistribution.fit(Xs,M,’CovType’,’diagonal’,...
’Options’,options);

Speaker identification based on GMMs

In the speaker identification phase (test phase), speaker-specific models learned in the training
phase are used to identify the speaker of the test vector sequences. The identification is
made based on the maximum a posteriori probability: the speaker of a test vector sequence is
decided to be the one whose GMMmodel gives the highest posterior probability.

The maximum a posteriori estimate for the speaker of a test vector sequence X = {x1, . . . , xT}

is:

ŝ = arg max
1≤j≤S

p(λj|X) = arg max
1≤j≤S

p(X|λj)p(λj)

p(X)
. (5)

The term p(λj) is a prior probability of the jth speaker, and can be assumed to be equal (1/S)
for all speakers. The denominator p(X) is also equal for all the speakers, hence we can write:

ŝ = arg max
1≤j≤S

p(X|λj). (6)



By assuming the observations to be independent this can be written as a sum of log-densities:

ŝ = arg max
1≤j≤S

T∑

t=1

logp(xt|λj). (7)

The probability density p(xt|λj) is the same as in (2). The segment is identified to be spoken
by the speaker whose model λsmaximizes (7).

For the implementation of the identification step, there are tools available in the MATLAB
Statistics toolbox. You can use them or write your own code.

3 Assignment: MATLAB program for speaker identification

In the previous section, you got a review of frame-wise LSF feature extraction and speaker
modeling and identification using GMMs. You should now write your own MATLAB pro-
gram for speaker identification and evaluate its recognition accuracy for new data.

3.1 Data

The set we use in this work is a subset of a CHiME speech database (available at
http://spandh.dcs.shef.ac.uk/projects/chime/PCC/datasets.html). The set
we use for this exercise is PCCdata16kHz_devel_clean.tar.gz (size 51M) from:

http://spandh.dcs.shef.ac.uk/projects/chime/PCC/data/

The selected subset consists of 16-bit stereo WAV files with a sampling frequency of 16 kHz
from 34 different speakers. The files are named to indicate directly the speaker: e.g. files
s1_*.wav are spoken by the speaker 1 and s23_*.wav by the speaker 23.

The first task is to download the data and extact the zip package. Divide the sentences into
training and test sentences. The training sentences are used for learning the parameters of the
speaker-specific GMM models and the test sentences for evaluating the identification accu-
racy of the learned models. For each speaker, use 10 randomly chosen sentences for training
(roughly half of the data) and the rest for testing. Operate on mono-signals: to convert the
original stereo signals into mono signals, use averaging of the left and right channels.

3.2 MATLAB implementation for training and testing

Write a MATLAB code that implements the speaker identification system described in Sec-
tion 2. Use training data to learn the parameters of speaker-specific GMMs and test data to
evaluate the identification accuracy.

For both training and test data, extract frame-wise LSFs of order 18 (sampling frequency of
the speech signals is 16 kHz). Use Hanning windowing of frames and a frame length of 30 ms
and a frame overlap of 50%. Before the windowing and feature extraction, use pre-filtering
of the audio signals with a filter y(n) = x(n) − 0.97x(n − 1) to emphasize the high frequency
content.

http://spandh.dcs.shef.ac.uk/projects/chime/PCC/datasets.html
http://spandh.dcs.shef.ac.uk/projects/chime/PCC/data/


Build a speaker-specific GMMmodel for each speaker using the LSF feature vectors extracted
from the speaker’s training data. Set the number of Gaussian components to M = 8. Use
diagonal covariance matrices.

Evaluate the identification accuracy by using the test data. Identify the speaker in each test
sentence by using the GMMmodels learned from the training data. Compute the identifica-
tion accuracy as in [1] for (a) each speaker as and (b) for the whole data by using the formula:

% correct identification = 100 ·
number of correctly identified segments

total number of segments
. (8)

Are some of the speakers more difficult to identify than the others? How does the accuracy
change if you increase/decrease the number of Gaussian components in GMM modeling?
What happens if the number of Gaussian components is too low/high? Are there some bot-
tlenecks in your implementation or in the general approach? Include the evaluation results
in the report for instance as a table or a figure.

4 Writing the report

Write a report of the work including the description of the implementation details and eval-
uation results for the given data set. Include the MATLAB code as an appendix of the report.

Since the exercise is new, feedback is also more than welcome (!) – for instance, were the
instructions easy/hard to follow; are the tools applied in the exercise useful for further stud-
ies/work; and do you feel you learned something/nothing by completing this exercise? In-
clude the feedback in the report.

Send the report in pdf form to hanna.silen@tut.fi by 10.5.2013.
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Building a Simple Speaker Identification System 
 
1. Introduction 
 

1.1. We will be using the Hidden Markov Model Toolkit (HTK). HTK is installed 
under linux on the lab machines. Your path should already be set, but you can 
check this by looking for a htk-related path element in your .bashrc file in 
your home directory. 

 
1.2. The HTK Book can be found at 

http://www.computing.dcu.ie/~john/htk/htkbook.pdf. Have a quick browse 
thru it. Familiarise yourself with where the tutorial section and the reference 
section can be found. 

 
1.3. What follows is a step-by step tutorial on how to create a simple speaker 

recogniser. If there are any problems with the tutorial, or the way HTK is 
configured under linux, please notify your tutor and/or mail me. 

 
1.4. The tutorial is like a basic recipe. As your skills develop you should 

experiment with other ingredients. The HTK book will give you ideas. 
 

 
2. The Grammar 
 

2.1. HTK uses a finite state grammar that consists of variables defined by regular 
expressions. Create a file called gram.txt and place the following in it. 

 
$speaker = John | Mary;
($speaker)

2.2. A word network must be created from the grammar. This can be done using 
HParse: 

HParse gram.txt wdnet
 

2.2.1. Have a look at the resulting file wdnet. Does it make any sense? 
 
3. Recording 
 

3.1. Record both John and Mary uttering the vowel /a/ as in “father” (as you may 
have done at the doctor’s at some point in your life). Make four recordings of 
the vowel for each speaker. Place them in files ja{1-4}.wav and ma{1-
4}.wav. Note the sampling rate at which the recordings were made. 

 

http://www.computing.dcu.ie/~john/htk/htkbook.pdf


4. Parameterisation 
 

4.1. We must first extract relevant information from the speech spectra. This is 
called parameterisation. We will use Mel-frequency cepstral coefficients 
(MFCCs). 

 
4.2. We must build a configuration file. Call it config_wav2mfc. In it place 

the following: 
 

# Coding parameters
SOURCEKIND = WAVEFORM
SOURCEFORMAT = WAV
SOURCERATE = Sampling Period in units of 10-7s
TARGETKIND = MFCC_0_D_A
TARGETRATE = Frame skip duration in units of 10-7s
SAVECOMPRESSED = T
SAVEWITHCRC = T
WINDOWSIZE = Frame duration in 10-7s
USEHAMMING = T
PREEMCOEF = 0.97
NUMCHANS = 26
CEPLIFTER = 22
NUMCEPS = 12
ENORMALISE = T

4.3. Note that in your configuration file, you must replace the italicised pieces 
with actual values. Use any frame skip in the range 10-20ms. Use any frame 
duration in the range 20-40ms. 

4.4. We can list the wav files (and corresponding targets) we wish to parameterise 
in a file. Let’s call it convert.scp and assume that our data is stored in a 
directory named Data: 

Data\ja1.wav Data\ja1.mfc
Data\ja2.wav Data\ja2.mfc
Data\ja3.wav Data\ja3.mfc
Data\ja4.wav Data\ja4.mfc
Data\ma1.wav Data\ma1.mfc
Data\ma2.wav Data\ma2.mfc
Data\ma3.wav Data\ma3.mfc
Data\ma4.wav Data\ma4.mfc

4.5. MFCCs are extracted from the .wav files with HCopy: 

HCopy -T 1 -C config_wav2mfc -S convert.scp 
 

4.6. Use HList to view the contents of any of the mfc files. Do they make 
sense? 

 
5. Model Preparation 

5.1. We will now initialise two speaker models with our training data. 



5.2. First we will create another configuration file, config_mfc, to let the HTK 
tools know about our mfc files: 

# Coding parameters
TARGETKIND = MFCC_0_D_A
TARGETRATE = ??
SAVECOMPRESSED = T
SAVEWITHCRC = T
WINDOWSIZE = ??
USEHAMMING = T
PREEMCOEF = 0.97
NUMCHANS = 26
CEPLIFTER = 22
NUMCEPS = 12
ENORMALISE = T

5.3. We will also list the mfc files we wish to use for training. We will use three 
tokens for training each model and retain the other for testing. List these in 
training.scp: 

Data\ja1.mfc
Data\ja2.mfc
Data\ja3.mfc
Data\ma1.mfc
Data\ma2.mfc
Data\ma3.mfc

5.4. Create a new directory hmm0 and place the following prototype model in a 
file called proto: 

~o <VecSize> 39 <MFCC_0_D_A>
~h "proto"

<BeginHMM>
<NumStates> 5
<State> 2

<Mean> 39
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0

<Variance> 39
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0

<State> 3
<Mean> 39
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0

<Variance> 39
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0



1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0

<State> 4
<Mean> 39
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0

<Variance> 39
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0

<TransP> 5
0.0 1.0 0.0 0.0 0.0
0.0 0.6 0.4 0.0 0.0
0.0 0.0 0.6 0.4 0.0
0.0 0.0 0.0 0.7 0.3
0.0 0.0 0.0 0.0 0.0

<EndHMM>

5.5. Now use HCompV to initialise the models with the training data: 

HCompV -C config_mfc -f 0.01 -m -S training.scp -M
hmm0 proto

5.6. This results in the creation of two files – proto and vFloors – in the 
directory hmm0. These files must be edited in the following way: 

5.6.1. An error occurs at this point which rearranges the order of the parts of 
the MFCC_0_D_A label as MFCC_D_A_0. This must be corrected. 

5.6.2. The first three lines of proto must be cut and pasted into vFloors, 
which is then saved as macros. 

5.6.3. A file called hmmdefs is created by copying and pasting the rest of 
the proto file once for each HMM and renaming the copies accordingly. 
Note that each HMM begis with ~h “model_name” and ends with 
<EndHMM>. For instance you could call your models “ja” and “ma”. 

 
6. Model Re-estimation 
 

6.1. Now that we have initialised our two speaker-vowel models with global 
means and variances, we will use HERest to perform Baum-Welch training. 

 
6.2. For this step we need to create two more files: 

speakertrainphones0.mlf and phonemodels0. The former 
contains what the HTK book refers to as ‘phone-level transcriptions’. These 
specify the phones in each of the sound files to be used in training the HMMs. 
The latter simply lists the phone-level models. 

 
6.3. speakertrainmodels0.mlf will look like: 



 
#!MLF!#
"*/ja1.lab"
ja
.
"*/ja2.lab"
ja
.
"*/ja3.lab"
ja
.
"*/ma1.lab"
ma
.
"*/ma2.lab"
ma
.
"*/ma3.lab"
ma

 
6.4. phonemodels0 … 

 
ja
ma

 
 

6.5. We then re-estimate our models 
 

HERest -C config_mfc -I speakertrainmodels0.mlf -t
250.0 150.0 1000.0 -S training.scp -H hmm0/macros -H
hmm0/hmmdefs -M hmm1 phonemodels0 

 
6.6. Do this three times, each time putting the re-estimated models in a new 

directory: hmm1 (as above), hmm2, hmm3. 
 
7. Recognition Testing 
 

7.1. The Dictionary 
 

7.1.1. The dictionary defines (in alphabetical order) speaker models by their 
constituent parts, i.e. by each HMM associated with them. For this 
speaker recogniser each model consists of only one HMM. A word 
model might consist of several phone states. (For example the word 
“one” might be defined as “w uh n” – and John’s model for the word one 
might be “jw juh jn”). Similarly, you could include SENT-START and 
SENT-END can be defined by a silence model (‘sil’), but ‘sil’ need not 
be included in this simple system. See the tutorial example in the HTK 
book for more on silence models 

 



7.1.2. Your dictionary – call it dict – will look like this: 
 

John ja
Mary ma

 
7.2. You also need to create a list of parameterised testing files and a list of 

models. The former will be of the same format as training.scp – call it 
testing.scp: 

 
Data\ja4.mfc
Data\ma4.mfc

 
7.3. The latter is similar to phonemodels0 but each model is enclosed in double 

quotes; call it HmmList and it will contain the following: 
 

“ja”
“ma” 

 
7.4. Now, having reminded yourself of the role of the grammar, we have all the 

elements in place to perform speaker recognition. Our recognised labels will 
be output to file recout.mlf when we carry out the recognition using 
HVite (which performs recognition using the Viterbi algorithm): 

 
HVite -H hmm3/macros -H hmm3/hmmdefs -S testing.scp
-i recout.mlf -w wdnet -p 0.0 -s 5.0 dict HmmList

 
8. Results 

 
8.1. We now want to gauge the accuracy of the recognition. 
 
8.2. List the contents of the test files. The former will be similar in format to 

speakertrainmodels0.mlf except the models listed are at the speaker 
level rather than the phone level. Call it speakertestmodels0.mlf. 

 
#!MLF!#
"*/ja4.lab"
John
.
"*/ma4.lab"
Mary 

 
8.3. HResults is then used: 

 
HResults -I speakertestmodels0.mlf HmmList
recout.mlf

 
8.4. Look up the HTK book to see how to: 

 
8.4.1. interpret the results; 
 
8.4.2. output a confusion matrix. 


