
EE627 � Term Project : Jul. 2013 Semester

August 12, 2013

Title : Build and demonstrate a real time contin-
uous speech recognition system in English

Assigned to : Batch No. 2

TAs Assigned : Karan Nathwani. He is Available
@ACES 203 MiPS Lab EE Department. email :
nathwani@iitk.ac.in

Objective :

The objective of this project is to build a continous speech recognition system
for English. A real time speech recognitiion needs to be built using the TIMIT
database. Experimental results for speech recognition in terms of word error
rate (WER) also need to be provided.

Methodology To Be Followed :

The methodlolgy need to be followed for performing the recogniton experiments
are as follows:

• Building the task grammar (a "language model")

• Constructing a dictionary for the models

• Creating transcription �les for training data .

• Encoding the data (feature processing)

• (Re-)training the acoustic models

• Evaluating the recognizer against the test data

• Reporting recognition results

• Real time system development

1

Database for Training

The database used for training is TIMIT database. The TIMIT corpus of read
speech is designed to provide speech data for acoustic-phonetic studies and
for the development and evaluation of automatic speech recognition systems.
TIMIT contains broadband recordings of 630 speakers of eight major dialects
of American English, each reading ten phonetically rich sentences. The TIMIT
corpus includes time-aligned orthographic, phonetic and word transcriptions as
well as a 16-bit, 16kHz speech waveform �le for each utterance. Corpus design
was a joint e�ort among the Massachusetts Institute of Technology (MIT), SRI
International (SRI) and Texas Instruments, Inc. (TI). The speech was recorded
at TI, transcribed at MIT and veri�ed and prepared for CD-ROM production by
the National Institute of Standards and Technology (NIST). The TIMIT corpus
transcriptions have been hand veri�ed. Test and training subsets, balanced
for phonetic and dialectal coverage, are speci�ed. Tabular computer-searchable
information is included as well as written documentation. The TIMIT database
is available at MiPS Lab. Please contact the TA assigned for the same.

Tools To Be Used

The Tools to be used to implement this term project is the SPHINX. The details
of download, installation, and usage are available at the following URL :

http://cmusphinx.sourceforge.net/

Deliverables/ Submissions

The deliverables or submission procedures for the term project are as follows:

• Presentations and Report : Two set of presentations is required for every
batch in this term project. The �rst presentation will be scheduled before
mid sem and the second presentation will be scheduled before end sem.
The marks will be distributed separately for two presentation. Addition-
ally a report needs to be submitted detailing the project.

• System Demo in real time : The demonstration of the project is need to
be carried out by each batch. The demonstration includes the real time
presentation of the working model for recognition system.

• Code/script submissions : The code or script has to be submitted by each
batch which will include complete details of the project.

Other Useful Links

The other useful links that might be helpful in preparation of the code or script
are as follows :

2

• SPHINX TOOLKIT : http://www.cs.cmu.edu/~archan/sphinxInfo.html

• Matlab Code : https://www.mathworks.in/matlabcentral/linkexchange/links/3703-
matlab-sphinx-documentation

3

PHONE MODEL USING SPHINX3-0.8

**
INSTALLING SPHINX ON A GNU/LINUX SYSTEM
**

1. Goto Home directory and Create a folder PhoneModel in the home directory.

mkdir PhoneModel

2. Create a directory called workspace in PhoneModel

mkdir workspace

3. In the workspace directory make 3 directories namely tools,source and downloads using the
command

mkdir downloads tools source

4. Copy all the zip files to the downloads directory

a. sphinx3-0.8.tar.gz
b. sphinxbase-0.6.tar.gz
c. SphinxTrain-1.0.tar.bz2

5. Untar the zip files sphinx3-0.8.tar.gz sphinxbase-0.6.tar.gz using commands

tar -xvzf sphinx3-0.8.tar.gz
tar -xvzf sphinxbase-0.6.tar.gz

6. Move sphinx3-0.8 and sphinxbase-0.6 folders to source directory using command

mv sphinx3-0.8 ../source
mv sphinxbase-0.6 ../source

7. Also make 3 directories in workspace/tools directory using the command

mkdir sphinx3 sphinxbase sphinxtrain

8. In the path workspace/source/sphinxbase-0.6 run the following command to compile and install
sphinxbase-0.6

./configure --prefix=/home/PhoneModel/workspace/tools/sphinxbase
make
make install

This configures, compiles and installs the sphinxbase.The above command creates 3 folders in
tools/sphinxbase i.e., bin, include and lib,of which there are executable binary files in bin folder. 2

lalan
Typewriter

lalan
Typewriter

files that are mainly used sphinx_fe and sphinx_jsgf2fsg

9. In the path workspace/source/sphinx3-0.8 run the following command to compile and install
sphinx3-0.8

./configure --prefix=/home/PhoneModel/workspace/tools/sphinx3 --with-
sphinxbase=/home/PhoneModel/workspace/source/sphinxbase-0.6
make
make install

This will configure, compile and install the sphinx3.The above command creates 4 folders in
tools/sphinx3 i.e., bin include lib and share,of which there are executable binary files in bin
folder.One of the files that is mainly used that is sphinx3_decode

10. In the downloads directory bunzip the SphinxTrain-1.0.tar.bz2 file to get SphinxTrain-1.0.The
command used is

bzip2 -cd SphinxTrain-1.0.tar.bz2 | tar -xv

11. move SphinxTrain-1.0 to the sphinxtrain directory inside tools directory

mv SphinxTrain-1.0 ../tools/sphinxtrain

12. In the path tools/sphinxtrain/SphinxTrain-1.0 execute the following commands

./configure
make

This configures and installs the Sphinxtrain.

14. in the etc/skel directory set the following environment variables by executing the following
command

$ vim /.bashrc ∼

at the end of the file add the following environmental variables

export SPHINXTRAIN=/home/PhoneModel/workspace/tools/sphinxtrain/SphinxTrain-1.0
export SPHINXDIR=/home/PhoneModel/workspace/tools/sphinx3
export SPHINXBASE=/home/PhoneModel/workspace/tools/sphinxbase
export CMULM=/home/PhoneModel/workspace/tools/cmuclmtk/

save and exit by
Esc
:wq

next execute the command

$ source /.bashrc ∼

close the terminal and re-open a new terminal

lalan
Typewriter
install -- cmuclmtk -- move cmuclmtk in worspace/source. create cmuclmtk directory in workspace/tools

from workspace/source/cmuclmtk/--

./configure --prefix=/home/lalan/PhoneModel/workspace/tools/cmuclmtk (note--sometime with prefix, tab does not work, so give location....)

make

make install

��

lalan
Typewriter

lalan
Typewriter

lalan
Typewriter

lalan
Typewriter

lalan
Typewriter

lalan
Typewriter

lalan
Typewriter

lalan
Typewriter

**
DATA PREPARATAION
**

15.Save all your wave files with .wav extension

16.Create a list of all the wave files as shown in calflow_train.fileids. For example if the wave files
are Abc.wav,Bcd.wav and Cde.wav, then the list will have

Abc
Bcd
Cde

as enteries. Save this as taskword_train.fileids.(The taskword can be any name of your choice. In
our case it is calflow1)

17.Create a list of transcription of all the wave files as shown in calflow1_train.transcription. For
example if the contents of the wav files are xxyyzz, ppqqrr, uuvvww respectively. then the
transcription will have

<s> xxyyzz </s> (Abc)
<s> ppqqrr </s> (Bcd)
<s> uuvvww </s> (Cde)

as enteries. Save this as taskword_train.transcription. Note maintain equal spacing between all the
words in all the lines.

18.Create a filler dictionary with all non-speech sounds with the name taskword.filler as shown by
calflow.filler. In our case silence is the only non-speech sound being used hence the enteries of the
filler dictionary are

<s> SIL
</s> SIL
<sil> SIL

19. Create a dictionary of all the words that are there in the vocabulary of the recogniser and save it
as taskword.dic as shown by calflow.dic. Here the enteries of the dictionary will be

xxyyzz xx yy zz
ppqqrr pp qq rr
uuvvww uu vv ww

again make sure that the spacings are regular in each line and there are no extra blank lines in the
end

20. Create a list of all the phones that are being used and save it as taskword.phone as shown by
calflow.phone. Here the enteries of the phone list will be

xx
yy

lalan
Typewriter
Note that the phone list is the sorted version n not--just shown here.

lalan
Typewriter

lalan
Typewriter

lalan
Typewriter

lalan
Typewriter

lalan
Typewriter

zz
pp
qq
rr
uu
vv
ww
SIL

make sure that the SIL is included in the phone list

**
SPHINX TRAIN
**

21. In the workspace directory create the directory hmm using the command

mkdir hmm

22. Goto the hmm directory and execute the following commamnd

cd hmm

$SPHINXTRAIN/scripts_pl/setup SphinxTrain.pl -task taskword

The taskword can be chosen by the user as per convenience, in our case it is calflow1.
The above command sets up all the folders and files required for training.
The above script generates the following important directories in hmm directory.

a. etc/ : which contains the configuration files and the required transcript and dictionary files. Move
taskword.dic, taskword.filler. taskword.phone, taskword_train.fileid and
taskword_train.transcription to this folder. It already contains two files named feat.params and
sphinx_train.cfg. The contents of feat.params should be as follows which set the parameters for
feature extraction

-alpha 0.97
-srate 8000
-frate 100
-dither yes
-doublebw no
-nfilt 31
-ncep 13
-lowerf 200
-upperf 3500
-nfft 512
-wlen 0.0256
-transform legacy
-feat __CFG_FEATURE__
-agc __CFG_AGC__
-cmn __CFG_CMN__
-varnorm __CFG_VARNORM__

lalan
Typewriter
this dollar sud be there aprt from terminal $.

lalan
Typewriter

lalan
Typewriter

lalan
Highlight

The contents of sphinx_train.cfg give the parameters to be passed during training. The following
modifications are required to be made in this file

$CFG_WAVFILE_EXTENSION = 'sph' to be changed to 'wav' ; that is to say, the
file extension is .wav
$CFG_WAVFILE_TYPE = 'nist' has to be changed to 'mswav' ; that is Microsoft
Wave file

The number of HMM and GMMS can also be changed as per requirement.

b. wav/ : which contains raw audio data for training the models. Move all your wave files to this
folder

c. feats/ : which contains the mfc files generated from the raw audio files after feature extraction.

d. model_parameters/ : which contains our final models (means, mixture weights, transition
matrices and variances) obtained after the training process.

e model_archtecture/ : which contains the model definition files and topology of basic HMM

23. go to the hmm dir and execute the command

perl scripts_pl/make_feats.pl -ctl etc/taskword_train.fileids

The above command extracts the feature in the form of .mfc files and saves them in the feat
directory

24. Then run the command

$ perl scripts_pl/RunAll.pl

The whole process may take some time. This creates the trained vectors which will be used while
decoding.

Note: For force allignment move the sphin3_decode binary file which is located at
tools/sphinx3/bin to hmm/bin. Enable the force allignment configuration part in sphinx_train.cfg.

Then retarian the system after making the following changes in RunAll.pl located at
hmm/scripts_pl

 ("$ST::CFG_SCRIPT_DIR/00.verify/verify_all.pl",
 # "$ST::CFG_SCRIPT_DIR/01.vector_quantize/slave.VQ.pl",
 "$ST::CFG_SCRIPT_DIR/02.falign_ci_hmm/slave_convg.pl",
 "$ST::CFG_SCRIPT_DIR/03.force_align/slave_align.pl",
 # "$ST::CFG_SCRIPT_DIR/04.vtln_align/slave_align.pl",
 #"$ST::CFG_SCRIPT_DIR/05.lda_train/slave_lda.pl",
 #"$ST::CFG_SCRIPT_DIR/06.mllt_train/slave_mllt.pl",
 #"$ST::CFG_SCRIPT_DIR/20.ci_hmm/slave_convg.pl",
 # "$ST::CFG_SCRIPT_DIR/30.cd_hmm_untied/slave_convg.pl",

lalan
Typewriter

lalan
Highlight

lalan
Typewriter
in message, u may find many error and warning messages and process con-

tinues, but no need to worry, worry when process stops. step completion u can see in hmm folder task.html

lalan
Typewriter

 #"$ST::CFG_SCRIPT_DIR/40.buildtrees/slave.treebuilder.pl",
 # "$ST::CFG_SCRIPT_DIR/45.prunetree/slave.state-tying.pl",
 #"$ST::CFG_SCRIPT_DIR/50.cd_hmm_tied/slave_convg.pl",
 #"$ST::CFG_SCRIPT_DIR/90.deleted_interpolation/deleted_interpolation.pl",
 #"$ST::CFG_SCRIPT_DIR/99.make_s2_models/make_s2_models.pl",
);

This will create a directory called falignout inside hmm dirctory. Copy the files
taskword.alignedfiles and taskword.alignedtranscripts.1 present in falignout directory and replace
taskword_train.fileids and taskword_train.transcription respectively with these files.
Once this done undo the changes done in RunAll.pl and sphinx_train.cfg and then retarin the sytem
to obtain the final models.

**
SPHINX DECODE
**

25. Create the decode directory in the path /home/PhoneModel/workspace/

mkdir decode

26. In the path /home/PhoneModel/workspace/decode create the subfolders by name feats, models
and wav folders where,

 a.) feats directory contains all the .mfc (feature extracted files) files
 b.) wav directory contains all the test wav files

27. In the path /home/PhoneModel/workspace/decode/models create the subfolders hmm and lm

 a.) hmm directory has the following files created during training: feat.params, mdef, means,
mixture_weights, transition_matrices, variances

 b.) lm directory has the following files: taskword.dic, taskword.filler and the taskword.fsg files

All the above files in hmm and lm are copied from the trained models executing the following
commands in the path /home/PhoneModel/workspace/

cp hmm/model_parameters/taskword.cd_cont_1000_8/* decode/models/hmm/

cp hmm/model_architecture/taskword .1000.mdef decode/models/hmm/mdef

cp hmm/etc/taskword.dic ../decode/models/lm

cp hmm/etc/taskword.filler ../decode/models/lm

cp hmm/etc/feat.params ../decode/models/hmm

28. Make taskword.jfsg file in the lm directory wich has the following format

#JSGF V1.0;

grammar topping;

lalan
Typewriter

lalan
Typewriter
this dots & / not required

lalan
Typewriter

lalan
Typewriter

lalan
Typewriter

lalan
Highlight

lalan
Highlight

lalan
Highlight

public <topping> = (SIL* ([<words>]) SIL*);

<words> = (xxyyzz | ppqqrr | uuvvww):

now run the following command to create the taskword.sfg file

 /home/PhoneModel/workspace/tools/sphinxbase/bin/sphinx_jsgf2fsg assamese2.jsfg >
assamese2.fsg

29. the feat.params should have the following enteries

-alpha 0.97
-samprate 8000
-frate 100
-dither yes
-doublebw no
-nfilt 31
-ncep 13
-lowerf 200
-upperf 3500
-nfft 512
-wlen 0.0256

30.Feature Extraction Command for Testing is

/home/PhoneModel/workspace/tools/sphinxbase-0.6/bin/sphinx_fe -argfile
models/hmm/feat.params -c test_files -di wav/ -do feats -ei wav -mswav yes -eo mfc

Where
-argfile is specified as models/hmm/feat.params.
-mswav specifies the Microsoft Wave file format.
test_files contains the list of all the wave files used for testing prepared is a manner similar to that
of training

31.the command for decoding is as follows

/home/PhoneModel/workspace/tools/sphinx3-0.8/bin/sphinx3_decode -hmm
models/hmm -op_mode 2 -fsg models/lm/assamese2.fsg -dict models/lm/assamese2.dic
-fdict models/lm/assamese2.filler -ctl test_files -logfn log.txt -hyp out.txt -cepdir feats/

Where,

-hmm Directory for specifying Sphinx 3's hmm, the following files are assummed to be
present, mdef, mean, var, mixw, tmat. If -mdef, -mean, -var, -mixw or -tmat are
specified, they will override this command.

-op_mode Operation mode, for internal use only. Since FSG is the mode used so -op_mode has
to be set to 2

lalan
Typewriter

lalan
Typewriter
from lm directory in decode/mode ls/lm

lalan
Typewriter

lalan
Typewriter

lalan
Typewriter

lalan
Typewriter
in decode/model/hmm

lalan
Typewriter

lalan
Typewriter
all parameter same as during traning except last four parameters are not there.

lalan
Typewriter

lalan
Typewriter

lalan
Squiggly

-fsg Finite state grammar.

-ctl Control file listing utterances to be processed (List of file that has to processed)

-logfn Log file (log.txt)

-hyp Recognition result file, with only words (out.txt)

-cepdir Input cepstrum files directory (prefixed to filespecs in control file) (Where, feats/
directory contain all the test mfc files)

out.txt has the list of files recognised and their corresponding words

**
WORD ERROR RATE
**

Once decoding is sucessful then to compute the word error rate following command is needs to
executed

perl /home/PhoneModel/workspace/hmm/scripts_pl/decode/word_align.pl ReferenceOut.txt
out.txt > temp

Where,
ReferenceOut.txt Reference Output file
out.txt is the output file generated using the decoding step
temp stores the individual and overall accuracy scores

Note: To generate the timing duration or frame durations of voiced and unvoiced regions in the
wave files goto /source/sphinx3-0.8/src/tests/regression directory and create a shell script as shown

#!/bin/sh

echo "ALIGN TEST simple"

tmpout="test-align-simple.seg"

#Simple test
sh ../../.././libtool --mode=execute ../../.././src/programs/sphinx3_align -logbase 1.0003 -mdef
/home/PhoneModel/workspace/hmm/model_parameters/calflow1.ci_cont/mdef -mean
/home/PhoneModel/workspace/hmm/model_parameters/calflow1.ci_cont_32/means -var
/home/PhoneModel/workspace/hmm/model_parameters/calflow1.ci_cont_32/variances -mixw
/home/PhoneModel/workspace/hmm/model_parameters/calflow1.ci_cont_32/mixture_weights
-tmat
/home/PhoneModel/workspace/hmm/model_parameters/calflow1.ci_cont_32/transition_matrices
-feat 1s_c_d_dd -topn 1000 -beam 1e-80 -senmgau .s3cont. -agc max -fdict
/home/PhoneModel/workspace/hmm/etc/calflow1.filler -dict
/home/PhoneModel/workspace/hmm/etc/calflow1.dic -ctl

lalan
Typewriter

lalan
Typewriter

/home/PhoneModel/workspace/hmm/etc/calflow1_train.fileids -cepdir
/home/PhoneModel/workspace/hmm/feat/ -insent
/home/PhoneModel/workspace/hmm/falignout/calflow1.aligninput -outsent $tmpout -wdsegdir ./
-phsegdir ./ > test-align-simple.out 2>&1

This will create files that will contain the word level as well as phone level time duration for each
wavefile

Learn decoding using Sphinx III

March 28, 2011

Pranav Jawale, DAPLAB, IIT Bombay

Useful links

Mother website of Sphinx: http://cmusphinx.sourceforge.net/

1. http://cmusphinx.sourceforge.net/wiki/ [Collaborative documentation]

2. http://cmusphinx.sourceforge.net/wiki/research/ [List of publications]

3. [User forums]

Speech Recognition - Generic discussions about speech recognition

Sphinx3 Sightings - News and announcements about sphinx3

cmusphinx-devel - For contacts of activities of development of all Sphinx components

Feature Requests - Feature Request Tracking System

4. [The Hieroglyphs: Building Speech Applications Using CMU Sphinx and Related Resources – by

various Sphinx developers] Original link: http://www.cs.cmu.edu/~archan/sphinxDoc.html

Local link: http://home.iitb.ac.in/~pranavj/daplabwork/hieroglyph_sphinx.pdf

5. Some more links http://www.cs.cmu.edu/~archan/sphinxInfo.html

6. Decoder description [must read]

 http://www.cs.cmu.edu/~archan/s_info/Sphinx3/doc/s3_description.html

7. The CMU-Cambridge Statistical Language Modeling Toolkit

http://www.speech.cs.cmu.edu/SLM/toolkit_documentation.html

8. Homeworks in Speech Processing -- Fall 2010 http://www.speech.cs.cmu.edu/15-492/

9. Speech recognition seminars at Leiden Institute for Advanced Computer Science, Netherlands

http://www.liacs.nl/~erwin/speechrecognition.html

http://www.liacs.nl/~erwin/SR2003/ [See slides under Students/ and Workshops/]

http://www.liacs.nl/~erwin/SR2005/

http://www.liacs.nl/~erwin/SR2006/

http://www.liacs.nl/~erwin/SR2009/ [also includes a workshop on HTK]

10. http://www.speech.cs.cmu.edu/comp.speech/ [infinite useful links]

11. Speech Recognition With CMU Sphinx [Blog by N. Shmyrev, one current Sphinx developer]

After following this tutorial you should be able to

Given a set of audio files, create dictionary, language model etc. and run the

Spinx3 decoder to get output of speech recognizer. Draw inferences from the log

files that are created as a result. The reader is assumed to be working on a MS

Windows machine.

http://cmusphinx.sourceforge.net/
http://cmusphinx.sourceforge.net/wiki/
http://cmusphinx.sourceforge.net/wiki/research/
http://sourceforge.net/projects/cmusphinx/forums/forum/5470
http://sourceforge.net/projects/cmusphinx/forums/forum/395832
https://lists.sourceforge.net/mailman/listinfo/cmusphinx-devel
http://sourceforge.net/tracker/?group_id=1904&atid=351904
http://www.cs.cmu.edu/~archan/sphinxDoc.html
http://home.iitb.ac.in/~pranavj/daplabwork/hieroglyph_sphinx.pdf
http://www.cs.cmu.edu/~archan/sphinxInfo.html
http://www.cs.cmu.edu/~archan/s_info/Sphinx3/doc/s3_description.html
http://www.speech.cs.cmu.edu/SLM/toolkit_documentation.html
http://www.speech.cs.cmu.edu/15-492/
http://www.liacs.nl/~erwin/speechrecognition.html
http://www.liacs.nl/~erwin/SR2003/
http://www.liacs.nl/~erwin/SR2005/
http://www.liacs.nl/~erwin/SR2006/
http://www.liacs.nl/~erwin/SR2009/
http://www.speech.cs.cmu.edu/comp.speech/
http://nsh.nexiwave.com/
http://sourceforge.net/users/nshmyrev/

Sphinx3 Decoding Tutorial Page 2

Download CMU SPHINX related files

1. Go to http://sourceforge.net/projects/cmusphinx/files/ There we find all the versions of all

software related to Sphinx1

We need Sphinx3, SphinxTrain, Sphinxbase and CMUCLMTK.

2. Create a folder called sphinx in C:\ drive (for that matter you can choose any drive).

Save the 4 *.zip files under C:\sphinx\

Extract the files

1. Use Win-zip to extract the zip files. Right click on each of them and select Win-zip > Extract to

here.

This will create following folders-

C:\sphinx\sphinx3

C:\sphinx\sphinxtrain

C:\sphinx\sphinxbase

C:\sphinx\cmuclmtk

1
 Latest (bleeding-edge) versions can be downloaded from this svn repository.

Sphinx3 is the speech recognizer (decoder).

SphinxTrain is a set of tools for acoustic modeling.

SphinxBase is a common set of library used by several projects in

CMU Sphinx.

CMU-Cambridge Language Modeling Toolkit is a suite of tools which

carry out language model training. Source: ‘Hieroglyphs’

Direct download links from sourceforge

Sphinx3-0.8

SphinxTrain-1.0

Sphinxbase0.6.1

CMUCLTK (just the binaries)

(Prefer these) Local (IITB) links

Sphinx3-(downloaded from SVN repos on

9th March 2011)

SphinxTrain-1.0(downloaded from

Sourceforge)

Sphinxbase (downloaded from SVN repos

on 9th March 2011)

CMUCLMTK (binaries created from SVN

version on 9th March 2011)

http://sourceforge.net/projects/cmusphinx/files/
http://www.winzip.com/downwz.htm
http://cmusphinx.svn.sourceforge.net/viewvc/cmusphinx/trunk/
http://sourceforge.net/projects/cmusphinx/files/sphinx3/0.8/sphinx3-0.8.tar.gz/download
http://sourceforge.net/projects/cmusphinx/files/sphinx3/0.8/sphinx3-0.8.tar.gz/download
http://sourceforge.net/projects/cmusphinx/files/sphinx3/0.8/sphinx3-0.8.tar.gz/download
http://sourceforge.net/projects/cmusphinx/files/sphinx3/0.8/sphinx3-0.8.tar.gz/download
http://sourceforge.net/projects/cmusphinx/files/sphinx3/0.8/sphinx3-0.8.tar.gz/download
http://sourceforge.net/projects/cmusphinx/files/sphinxbase/0.6.1/sphinxbase-0.6.1.tar.gz/download
http://sourceforge.net/projects/cmusphinx/files/sphinxbase/0.6.1/sphinxbase-0.6.1.tar.gz/download
http://sourceforge.net/projects/cmusphinx/files/sphinxbase/0.6.1/sphinxbase-0.6.1.tar.gz/download
http://home.iitb.ac.in/~pranavj/daplabwork/sphinx/sphinx3.zip
http://home.iitb.ac.in/~pranavj/daplabwork/sphinx/sphinx3.zip
http://home.iitb.ac.in/~pranavj/daplabwork/sphinx/sphinxtrain.zip
http://home.iitb.ac.in/~pranavj/daplabwork/sphinx/sphinxbase.zip
http://home.iitb.ac.in/~pranavj/daplabwork/sphinx/cmuclmtk.zip
http://home.iitb.ac.in/~pranavj/daplabwork/sphinx/cmuclmtk.zip

Sphinx3 Decoding Tutorial Page 3

First of all, we will build sphinxbase, because next installations are dependent on it.

Install sphinxbase

1. Open C:\sphinx\sphinxbase

2. Doubleclick on sphinxbase.sln, the Visual Studio solution file for sphinxbase (You should have

Visual Studio 2008 or newer)

3. In the menu, select Build -> Batch Build. Click Select All and then Build in the Batch Build

window. Close the project after successful build.

Figure 1- Building Sphinxbase

4. This will create following 5 exe files, sphinxbase.dll and sphinxbase.lib files in

C:\sphinx\sphinxbase\bin\Debug (also in C:\sphinx\sphinxbase\bin\Release)

Figure 2 Executables and other files in sphinxbase

Sphinx3 Decoding Tutorial Page 4

Figure 3- Executables and other files in Sphinxbase

See next page for Sphinx3 decoder installation.

Difference between debug and release version of executables (we chose to create both above)
Debug and Release are different configurations for building your project.
You generally use the Debug mode for debugging your project, and the Release mode for the final build for end
users. The Debug mode does not optimize the binary. It produces (as optimizations can greatly complicate
debugging), and generates additional data to aid debugging. The Release mode enables optimizations and
generates less (or no) extra debug data. Source: 1 and 2

http://social.msdn.microsoft.com/forums/en-US/clr/thread/4de6861f-e723-4def-bcaf-aa717a3e1897/
http://haacked.com/archive/2004/02/14/difference-between-debug-vs-release-build.aspx

Sphinx3 Decoding Tutorial Page 5

Install sphinx3

1. Open C:\sphinx\sphinx3

2. Doubleclick on sphinx3.sln. Next build the projects same as for sphinxbase. Close the project

after successful build.

Figure 3 - Building Sphinx3

3. Step 2 will create following 12 exe files, s3decoder.dll, s3decoder.lib and other files in

C:\sphinx\sphinx3\bin\Debug and C:\sphinx\sphinx3\bin\Release

Figure 4 - Executables and other files in Sphinx3

4. Copy C:\sphinx\sphinxbase\bin\Release\sphinxbase.dll to C:\sphinx\sphinx3\bin,
C:\sphinx\sphinx3\bin\Debug and C:\sphinx\sphinx3\bin\Release

Sphinx3 Decoding Tutorial Page 6

Install CMUCLTK

1. Open C:\sphinx\cmuclmtk

2. I have already provided compiled binaries (32bit) inside C:\sphinx\cmuclmtk\executables. Let

me know if they give any error later.

Install SphinxTrain

This is not required for decoding. So we will defer its installation.

We are now done with building executables! How are we going to use them?

Before using them, note that it will be tiresome to copy and paste the *.exes to the location at which

you will have the test data. So, in order to be able to call them from anywhere we will do following –

Set Path Variables

Windows-XP Users

1. Click START, move pointer over My Computer, right-click, select properties. This will open a

System Properties window. [click to see Figure 5]

2. Select Advanced tab in the System Properties window. [Figure 6]

3. Click on Environment Variables button which is near the bottom of window. This will open

Environmental Variables window.

4. Scroll down and select PATH in the System Variables box. Click Edit. [Figure 7]

5. Above step will throw up an Edit System Variable window. Name of the variable is PATH. [Fig 8]

6. Click near end of text in Variable Value box. We will add some paths here. Paths are separated

by semicolons and no spaces occur anywhere.

7. Type a semicolon near end of last path in the box and write C:\sphinx\sphinx3\bin\Release

after that. [Figure 9]

8. Exactly after that (without leaving any space) type another semicolon and write

C:\sphinx\sphinxbase\bin\Release

9. Give another semicolon and write C:\sphinx\cmuclmtk\executables

In short you have to add

;C:\sphinx\sphinx3\bin\Release;C:\sphinx\sphinxbase\bin\Release;C:\sphinx\cmuclmtk\executables

10. Click OK. Edit System Variable window will disappear. Click another OK. Environmental Variable

window will disappear. Click one more OK and let System Properties window disappear.

11. Restart the computer (may not be needed, still.)

Sphinx3 Decoding Tutorial Page 7

Figure 5

Sphinx3 Decoding Tutorial Page 8

Figure 6

Figure 7

Sphinx3 Decoding Tutorial Page 9

Figure 8

Sphinx3 Decoding Tutorial Page 10

Figure 9

Windows 7 Users

1. Click Windows button, move pointer over Computer, right-click, select Properties. [Figure 10]

2. Above step will throw up a window. Click on Advanced system settings in the left column. This

will show the System Properties window. [Figure 11]

3. Click on Advanced tab. Click Environment Variables button. [Figure 12]

4. Scroll down and select Path in the System Variables box.

5. Click Edit. [Figure 13]

6. After this follow the same steps as for Windows XP users [Steps 6 - 11]

Sphinx3 Decoding Tutorial Page 11

Figure 10

Sphinx3 Decoding Tutorial Page 12

Figure 11

Figure 12

Sphinx3 Decoding Tutorial Page 13

Figure 13

>> IMPORTANT <<

In order to check that all the paths have been set correctly open the command prompt. Type

sphinx3_decode and hit Enter. If it gives following message

“'sphinx3_decode' is not recognized as an internal or external command, operable program or batch

file.”

Then there was some mistake in setting path variables for sphinx3.

Similarly test using following two commands to see whether paths of sphinxbase and cmuclmtk are set

correctly.

sphinx_fe [an executable in sphinxbase]

and

text2idngram [an executable in cmuclmtk]

Sphinx3 Decoding Tutorial Page 14

Things we need for decoding

First create a workspace (a directory wherein test data etc. will be located).
Create a new folder called sphinxtest anywhere on computer. I created it here

E:\sphinxtest

We need following things for decoding -

1. Audio files

 Download a zipped test folder “test1.zip” them from here and keep it in E:\sphinxtest

2. Right click on test.zip and select Win-zip > Extract to here.

 Go to E:\sphinxtest\test1\audio. Here you will see the wav files which we will use for testing.

2. Acoustic Models

 These are present in E:\sphinxtest\test1\hmm1 folder.

3. Dictionary

4. Language model

We will create 3 and 4 as explained later.

Till now we have following directory structure

My Computer

C:\sphinx

sphinx3

sphinxbase

cmuclmtk

E:\sphinxtest

test1

audio feats decode.bat hmm1

mdef

means

mixture_weights

transition_matrices

variances

lm1

sample
dictionary

test1.filler.txt

transcription.txt

lmscript_unigram.bat

http://home.iitb.ac.in/~pranavj/daplabwork/sphinx/test1.zip

Sphinx3 Decoding Tutorial Page 15

Let’s create the Dictionary!

Listen to the cerii.wav in E:\sphinxtest\test1\audio. What does it say?

It contains the word – Cherry. Similarly other wav files have been named according to what they

contain.

We need to tell the decoder which words it is supposed to recognize and what is the phone sequence

corresponding to each of those words. This is accomplished by the pronunciation dictionary. Here our

dictionary will contain these 5 words- ananasa, baajari, bhaat, cherry, makaa.

Create an empty file and write following lines in it

The first column is the word and second column is the corresponding phonetic representation. In each
line, after writing the word, give TAB and write phones one after another with SINGLE SPACE between
them e.g. cherryTABcSPACEeSPACErSPACEii

Save this file as test1.dic.txt in E:\sphinxtest\test1\lm1 (.txt extension is NOT necessary). [I have
already provided this file- Pranav]

From where do these phones come?
It depends on which phone models were created during training. If you open the model definition file-
E:\sphinxtest\test1\hmm1\mdef with your text editor (I recommend TextPad for clear formatting,
please avoid notepad), you will see list of all the phones, fillers and corresponding HMM state ids.

What do these phones sound like?

Open the file labelSetASR100815.pdf in the test1 folder. It lists all the phones in mdef file + some extra
phones (e.g. l’) and example words for each of them. You can add your own entries in the dictionary if
you wish.

Note: Some words may have more than one possible pronunciation. To recognize all the common
pronunciation variants we list them all in the dictionary. Here baajarii(2) is the second possible
pronunciation of baajarii. If you come up with a third one, you can write it as baajarii(3) and so on.

Also note that all the words/phones in the dictionary are lowercase. Instead they can all be uppercase,
just make sure that you don’t mix them. CHERRY and cherry are the same!

ananasa a n a n a s
baajarii b aa j r ii
baajarii(2) b a j a r ii
bhaat bh aa t
cherry c e r ii
makaa m a k aa

http://www.textpad.com/download/

Sphinx3 Decoding Tutorial Page 16

 What is the Filler dictionary?

According to Wikipedia a filler is a sound or word that is spoken in conversation by one participant to
signal to others that he/she has paused to think but is not yet finished speaking. Examples include umm,
eh etc. In general, filler is anything which is used to fill the gaps. In speech recognition we create models
for fillers which (if deemed right) are inserted by the decoder in its hypothesis about the audio input.

Open the file test1.filler.txt (in E:\sphinxtest\test1\lm1) with TextPad (NOT notepad). You will see
these entries-

It is obvious what these fillers sound like (AIR -> sound of flowing air etc.).

Apart from filler sounds, these three lines are there-

These lines are common to any filler dictionary. <s> denotes start of the sentence (utterance) silence,

</s> denotes the end silence. In the decoder log file, you will see just <sil>. All 3 corresponds to SIL i.e.

silence.

Now for the Language Model...

Quoting http://cmusphinx.sourceforge.net/wiki/tutoriallm (a tutorial on building language models)

“There are two types of models that describe language - grammars and statistical language models.

Grammars describe very simple types of languages for command and control, and they are usually

written by hand or generated automatically with plain code.”

Here we will create a statistical language model (called as n-gram) using CMUCLMTK (the CMU-
Cambridge Statistical Language Modeling Toolkit).

+AIR+ +AIR+
+BABBLE+ +BABBLE+
+CAR_HORN+ +CAR_HORN+
+THROAT+ +THROAT+
+BG_NOISE+ +BG_NOISE+

<s> SIL
</s> SIL
<sil> SIL

http://en.wikipedia.org/wiki/Filler_(linguistics)
http://cmusphinx.sourceforge.net/wiki/tutoriallm

Sphinx3 Decoding Tutorial Page 17

A little theory –

Let W be a sequence of words (w1, w2, …, wm) in the dictionary. P(W) is the probability of occurrence of
this sequence. We can write P(W) as –

1 2 1 3 1 2 m 1 2 m -1 i iP (W)= P (w)P (w w)P (w |w ,w) ...P (w |w w w)= w
1

| , , ... (|Φ)
m

i

P




iΦ is in some sense the history of the ith word.

Note we could also have expanded P(W) as below but (perhaps) it makes no difference.

m m -1 m m -2 m m -1 1 m m -1 2 i iP (W)= P (w)P (w w)P (w |w ,w) ...P (w |w w w)= w
1

| , , ... (|Φ ')
m

i

P




In n-gram model we assume that the history of a word is only composed of last n-1 words. An n-gram
model specifies probability of occurrence of n-grams (group of n consecutive words).

Unigram language model
Here n = 1 and we expand P(W) as

1 2 3 m iP (W)= P (w)P (w)P (w) ...P (w)= w
1

()
m

i

P




 So the occurrence of each word is independent of any other word. Further assume that each of iw()P

is equal (all words equiprobable).

Bigram / trigram language models

In bigram iΦ is composed of 1 previous word, and in trigram it is composed of 2 previous words.

Example from here - The LM probability of an entire sentence is the product of the individual word
probabilities. For example, the LM probability of the sentence "HOW ARE YOU" is:

P(HOW | <s>)*P(ARE | <s>, HOW)*P(YOU | HOW, ARE)*P(</s> | ARE, YOU)

Let’s now look at an example of language model to see what it means.

There is a batch script lmscript_unigram.bat in lm1 folder. To run it, open the command prompt and go

to E:\sphinxtest\test1\lm1

Now run lmscript_unigram.bat in command prompt.

It will give a message “7 unigrams created” and will create unigram model test1.lm.

 Open test1.lm with a text-editor.

http://www.cs.cmu.edu/~archan/s_info/Sphinx3/doc/s3_description.html#lm_ngrams

Sphinx3 Decoding Tutorial Page 18

test1.lm

First column gives log10 probability of observing the word written next. [10-0.699 = ~0.2]
Note that language model doesn’t contain any of the fillers (but <s> and </s> are mandatory).

Figure 14 - Language model creation (from http://www.speech.cs.cmu.edu/SLM/toolkit_documentation.html#typical_use)

Figure 14 shows the steps for creating a language model.

“Text” corresponds to transcription.txt which contains the transcription using which unigram model is
being trained.

“Vocab” corresponds to test1.vocab (open it with TextPad). It contains alphabetical list of all the words
(excluding fillers, but including context cues [test1.css.txt])

“Id N-gram” corresponds to test1.idngram.

test1.lm is the language model file. It has to be converted into binary DMP format (test1.lm.DMP) for it
to be readable by sphinx3 decoder.
Try to see which steps in the Figure 11 correspond to which commands in lmscript_unigram.bat.

\data\
ngram 1=7

\1-grams:
-98.8539 </s>
-98.8539 <s>
-0.6990 ananasa
-0.6990 baajarii
-0.6990 bhaat
-0.6990 cherry
-0.6990 makaa

http://www.speech.cs.cmu.edu/SLM/toolkit_documentation.html#typical_use

Sphinx3 Decoding Tutorial Page 19

It’s time to decode.

Figure 15 "Inputs and outputs" Sphinx3_decode

As shown in Figure 15 we need MFCCs of the wav files which we wish to recognize. Open the script

decode.bat in test1 folder using a text editor. It has two main commands –

1. Using sphinx_fe MFCCs are computed for all the files whose names appear in

E:\sphinxtest\test1\list

All the wav files are in E:\sphinxtest\test1\audio

Following parameters are provided to sphinx_fe

Parameter Value set in decode.bat and its meaning

alpha 0.97 (pre-emphasis factor)

samprate 8000 (Hz)

dither Yes (add ½ bit noise)

doublebw No (Do not use double bandwidth filters)

nfilt 36 (number of filters used in MFCC computation)

ncep 13 (number of cepstral coefficients)

lowerf 133.33 (Lower cutoff frequency in Hz)

upperf 3500 (Upper cutoff frequency in Hz)

nfft 256 (256 point FFT)

wlen 0.0256 (Hamming window length in seconds)

frate 100 (frames per second)

c E:\sphinxtest\test1\list (control file, contains names of wav files w/o .wav extension)

di E:\sphinxtest\test1\audio (wav files are assumed to be present here)

ei wav (extension of input audio files)

mswav Yes (whether input files are in mswav format)

do E:\sphinxtest\test1\feats (directory where MFCC files will be stored)

eo mfc (extension of MFCC files)

mfcclog E:\sphinxtest\test1\mfcclog.txt (log file created by sphinx_fe)

Sphinx3 Decoding Tutorial Page 20

2. Secondly, we use sphinx3_decode, we recognize all the wav files specified in the control file

(“list”). We have specified following parameters for the decoder [there are many more params

that we have not specified. To see them just type sphinx3_decode in command window and hit

Enter]–

Parameter Value set in decode.bat and their meaning

hmm E:\sphinxtest\test1\hmm1 (folder where the 5 parameter files of acoustic models
are present)

lm E:\sphinxtest\test1\lm1\test1.lm.DMP (path to the binary language model file)

dict E:\sphinxtest\test1\lm1\test1.dic.txt (path to pronunciation dictionary)

fdict E:\sphinxtest\test1\lm1\test1.filler.txt (path to filler dictionary)

hyp E:\sphinxtest\test1\decode.out.txt(decoder hypothesis will be written here)

cepdir E:\sphinxtest\test1\feats (folder where the MFCC files of test data are present)

cepext .mfc (extension of MFCC files)

ceplen 13 (number of cepstral coefficients used in creating MFCC files)

frate 100 (frame rate, in frames per second used while creating MFCC files)

ctl E:\sphinxtest\test1\list (control file, list of files to decode)

dither yes

hypseg E:\sphinxtest\test1\hypseg (Recognition result file, with word segmentations and
scores. for more refer this)

outlatdir E:\sphinxtest\test1\lat (folder in which to dump lattices. Lattice is a word-graph
of all possible candidate words recognized during the decoding of an utterance,
including other attributes such as their time segmentation and acoustic likelihood
scores. for more refer this)

outlatfmt s3 (format in which to dump word lattices, either ‘s3’ or ‘htk’)

latext lat (filename extension for lattice files for more refer this and this)

hmmdump No (If set to yes, we can see info about active HMM states for each frame)

logfn E:\sphinxtest\test1\decodelog.txt (log file of decoding)

Note!!! Edit the first line in decode.bat if path to test1 is different from

E:\sphinxtest\test1 on your computer.

Let’s now run decode.bat. Open command window, CD to E:\sphinxtest\test1\

Type decode.bat and hit Enter.

Looking at the hypothesis file

Open E:\sphinxtest\test1\decode.out.txt. In each line the word in bracket is the name of the

wav file and the words before it is the decoder output. For example, if a line reads cherry cherry

(cerii(-21db)_cerii), it means cerii(-21db)_cerii.wav was recognized as cherry cherry.

Listen to each of the listed audio files and see which once were correctly recognized, partially

correctly recognized, totally incorrectly recognized or not recognized at all.

http://www.cs.cmu.edu/~archan/s_info/Sphinx3/doc/s3_description.html#sec_hypseg
http://www.cs.cmu.edu/~archan/s_info/Sphinx3/doc/s3_description.html#sec_decoverview
http://www.cs.cmu.edu/~archan/s_info/Sphinx3/doc/s3_description.html#wordlat_overview
http://sourceforge.net/projects/cmusphinx/forums/forum/5471/topic/4084737

Sphinx3 Decoding Tutorial Page 21

Note that the hypothesis file doesn’t contain information about inserted fillers, to see them we

have to look into the log file.

Looking at the log file

Open E:\sphinxtest\test1\decodelog.txt

Initial part of log file gives info about default decoder parameters and their changed values (if

any). Then there is a lot of information about how the decoder interprets acoustic models and

language model.

Then you will see a Backtrace information about each of the wav files. Here is how to interpret

a sample backtrace.

Backtrace(cerii(-21db)_cerii)

FV:cerii(-21db)_cerii> WORD SFrm EFrm AScr(UnNorm) LMScore AScr+LScr AScale

fv:cerii(-21db)_cerii> <sil> 0 12 277164 -74111 203053 394797

fv:cerii(-21db)_cerii> cherry 13 54 -139331 -53781 -193112 446625

fv:cerii(-21db)_cerii> +CAR_HORN+ 55 76 240803 -74111 166692 607758

fv:cerii(-21db)_cerii> cherry 77 118 23905 -53781 -29876 461520

fv:cerii(-21db)_cerii> +BABBLE+ 119 130 273888 -74111 199777 408987

FV:cerii(-21db)_cerii> TOTAL 676429 -329895

The cerii(-21db)_cerii.wav file has 131 frames (at framerate = 100 fps).

SFrm = strat frame index

EFrm = end frame index

AScr = acoustic score for the segment P (O|W)

LMScore = language model score

<sil> i.e. silence was recognized from frame[0] to frame[12]

cherry was recognized from frame[13] to frame[54]

and so on ..

In particular, listen to cerii(-40dB)_cerii.wav and cerii(-50dB).wav and see the decoder output.

Can you hear 2 “cherries” in the first file and one cherry in second? Decoder can even recognize

words which are of very low amplitude.

Also listen to cerii_horn.wav and see its backtrace in the log file. Car horn would have been

recognized, see if its location has been correctly recognized.

Nothing has been recognized (apart from fillers) for ananas_infy_zero.wav even though you can

make out what is being said.

Sphinx3 Decoding Tutorial Page 22

Record your own wav files, put them in audio folder, add their name in list file and run

decode.bat again.

-------------- Maths behind scores, I will update this section later ------------------------------------

If O is the observation vector

W' is the recognized word for given O

W' = argmax P(O|W)*P(W)

log [P(O|W)*P(W)] = log [P(O|W)] + log [P(W)]

log [P(W)] comes from the language model. It is equal to Language_Weight*LMScore

Default value of language_weight is 9.5.

Also sphinx uses log to the base 1.0001 while giving scores.

If Q is the phone sequence

P(O|W) = P(O|Q)*P(Q|W)

taking log

log [P(O|W)] = log [P(O|Q)*P(Q|W)] = log [P(O|Q)] + log [P(Q|W)]

P [O|Q] = Probability of observing O if Q were the phone sequence

--

Sphinx3 Decoding Tutorial Page 23

