
EE627 � Term Project : Jul. 2013 Semester

August 12, 2013

Title : Build and demonstrate a real time contin-
uous speech recognition system in Hindi

Assigned to : Batch No. 4

TAs Assigned : Karan Nathwani. He is Available
@ACES 203 MiPS Lab EE Department. email :
nathwani@iitk.ac.in

Objective :

The objective of this project is to build a continous speech recognition system
for Hindi. A real time speech recognitiion needs to be built using the District
and Crop database. Experimental results for speech recognition in terms of
word error rate (WER) also need to be provided.

Methodology To Be Followed :

The methodlolgy need to be followed for performing the recogniton experiments
are as follows:

• Building the task grammar (a "language model")

• Constructing a dictionary for the models

• Creating transcription �les for training data .

• Encoding the data (feature processing)

• (Re-)training the acoustic models

• Evaluating the recognizer against the test data

• Reporting recognition results

• Real time system development

1



Database for Training

The database used for training is District and Crop database. The district and
crop database are obtained by recording the districts names and crop names
from several speakers. Majority of the speaker population were students and
employees of various departments and centers of Indian Institute of Technology
Kanpur. Speakers were selected based on parameters such as diversity of age,
dialect and gender as these parameters are very important in the e�ective de-
sign of a database. The distribution of the male female ratio was the same in
developing the audio archives.

Tools To Be Used

The Tools to be used to implement this term project is the HTK Toolkit. The
details of download, installation, and usage are available at the following URL :

http://htk.eng.cam.ac.uk/

Deliverables/ Submissions

The deliverables or submission procedures for the term project are as follows:

• Presentations and Report : Two set of presentations is required for every
batch in this term project. The �rst presentation will be scheduled before
mid sem and the second presentation will be scheduled before end sem.
The marks will be distributed separately for two presentation. Addition-
ally a report needs to be submitted detailing the project.

• System Demo in real time : The demonstration of the project is need to
be carried out by each batch. The demonstration includes the real time
presentation of the working model for recognition system.

• Code/script submissions : The code or script has to be submitted by each
batch which will include complete details of the project.

Other Useful Links

The other useful links that might be helpful in preparation of the code or script
are as follows :

• HTK archives : http://www.�t.vutbr.cz/~ihubeika/ZRE/lab/htk_ano_ne_english.pdf,
http://ijcsi.org/papers/IJCSI-9-4-1-359-364.pdf

• Matlab Code : http://www.mathworks.in/company/newsletters/articles/developing-
an-isolated-word-recognition-system-in-matlab.html

2



HTK Basic Tutorial (Nicolas Moreau)  1 

HTK (v.3.1): Basic Tutorial 
Nicolas Moreau / 02.02.2002 

 

 

Content 

WHAT IS HTK?.......................................................................................................................... 3 

1 YES/NO RECOGNITION SYSTEM ............................................................................................. 3 

2 CREATION OF THE TRAINING CORPUS ................................................................................... 4 
2.1  Record the Signal..................................................................................................................... 4 
2.2  Label the Signal ....................................................................................................................... 4 
2.3  Rename the Files...................................................................................................................... 5 

3 ACOUSTICAL ANALYSIS .......................................................................................................... 5 
3.1  Configuration Parameters ...................................................................................................... 6 
3.2  Source / Target Specification.................................................................................................. 7 

4 HMM DEFINITION.................................................................................................................. 7 

5 HMM TRAINING ..................................................................................................................... 9 
5.1  Initialisation ............................................................................................................................. 9 
5.2  Training.................................................................................................................................. 11 

6 TASK DEFINITION ................................................................................................................. 12 
6.1  Grammar and Dictionary ..................................................................................................... 12 
6.2  Network .................................................................................................................................. 13 

7 RECOGNITION ....................................................................................................................... 14 

8 PERFORMANCE TEST ............................................................................................................ 16 
8.1  Master Label Files ................................................................................................................. 16 
8.2  Error Rates ............................................................................................................................ 17 

 





HTK Basic Tutorial (Nicolas Moreau)  3 

What is HTK? 

HTK is the “Hidden Markov Model Toolkit”  developed by the Cambridge University 
Engineering Department (CUED). This toolkit aims at building and manipulating Hidden 
Markov Models (HMMs). HTK is primarily used for speech recognition research (but 
HMMs have a lot of other possible applications…) 

HTK consists of a set of library modules and tools available in C source form. It is 
available on free download, along with a complete documentation (around 300 pages). 
See: http://htk.eng.cam.ac.uk/. 

1 Yes/No Recognition System 

In this tutorial, we propose to build a 2-word recogniser with a {  “Yes” , “No”  }  vocabulary, 
based on HTK tools. It’s the most basic Automatic Speech Recognition (ASR) system that 
can be designed… 

1.1 Construction steps 

The main construction steps are the following: 

- Creation of a training database: each element of the vocabulary is recorded several times, 
and labelled with the corresponding word. 

- Acoustical analysis: the training waveforms are converted into some series of coefficient 
vectors. 

- Definition of the models: a prototype of Hidden Markov Model (HMM) is defined for 
each element of the task vocabulary. 

- Training of the models: each HMM is initialised and trained with the training data. 

- Definition of the task: the grammar of the recogniser (what can be recognised) is defined. 

- Recognition of an unknown input signal. 

- Evaluation: the performance of the recogniser can be evaluated on a corpus of test data. 

1.2 Work space organisation 

It is recommended to create a directory structure such as the following: 

- dat a/  : to store training and test data (speech signals, labels, etc.), with 2 sub-directories 
dat a/ t r ai n/  and dat a/ t est /  to separate the data used to train the recogniser from the 
ones used for performance evaluation. 

- anal ysi s/  : to store files that concern the acoustical analysis step. 

- t r ai ni ng/  : to store files that concern the initialisation and training steps. 

- model /  : to store the recogniser’s models (HMMs). 

- def / : to store files that concern the definition of the task. 

- t est /  : to store files that concern the test. 



HTK Basic Tutorial (Nicolas Moreau)  4 

1.3 Standard HTK tool options: 

Some standard options are common to every HTK tools. In the following, we will use 
some of them: 

- - A : displays the command line arguments. 

- - D : displays configuration settings. 

- - T 1 : displays some information about the algorithm actions. 

To have the complete list: 
see HTK documentation, p.50 (Chap.4, The Operating Environment). 

2 Creation of the Training Corpus 

HSLab
Training
Corpus
(. si g)

+
Training
Labels
(. l ab)

USER

 

Fig. 1: Recording and labelling training data. 

First, we have to record the “Yes”  and “No”  speech signals with which word models will 
be trained (the training corpus). Each speech signal has to be labelled, that is: associated with 
a text (a label) describing its content. Recording and labelling can be done with the HSLab 
HTK tool (but any other tool could be used). 

To create and label a speech file: 
 
HSLab  any_name. si g 
 
The tool’s graphical interface appears. 

2.1 Record the Signal 
Press “Rec”  button to start recording the signal, then “Stop” . 

A buffer file called any_name_0. si g is automatically created in the current directory. 
(if you make a new record, it is saved in a second buffer file called any_name_1. si g). 
 
Remarks: 
- The signal files (. s i g) are here saved in a specific HTK format. It is however possible to 
use other audio format (.wav, etc.): 
see HTK documentation, p.68 (Chap.5, Speech Input/Output). 
- The default sampling rate is 16kHz. 
 

2.2 Label the Signal 
To label the speech waveform, first press “Mark” , then select the region you want to label. 

When the region is marked, press “Labelas” , type the name of the label, then press Enter. 



HTK Basic Tutorial (Nicolas Moreau)  5 

In this tutorial, we will only record isolated words (“Yes”  or “No” ) preceded and followed by 
a short silence. For each signal, we have to label 3 successive regions: start silence (with label 
si l ), the recorded word (with label yes  or no), and end silence (with label si l ). These 3 
regions cannot overlap with each other (but no matter if there is a little gap between them). 
When the 3 labels have been written, press “Save” : a label file called any_name_0. l ab is 
created. At this point you can press “Quit” . 
 
Remark: 
The . l ab file is a simple text file. It contains for each label a line of the type: 
4171250 9229375 s i l  
9229375 15043750 yes 
15043750 20430625 s i l  

where numbers indicate the start and end sample time of each label. Such a file can be 
manually modified (for example to adjust the start and end of a label) or even created (the use 
of the HSLab tool is not required). 

2.3 Rename the Files 
After each recording/labelling, you have to rename the . s i g and . l ab files to your 

convenience (e.g. yes01. si g and yes01. l ab). 

10 records for each of the 2 words should be enough for this tutorial. 

The signal files should be stored in a dat a/ t r ai n/ si g/  directory (the training corpus), 
the labels in a dat a/ t r ai n/ l ab/  directory (the training label set). 
 
For more details on the HSLab graphical interface: 
see HTK documentation, p.237 (Reference Section, HSLab). 

3 Acoustical Analysis 

HCopy
Training
Corpus
(. si g)

Training
Corpus

(. mf cc )

Configuration
File

Script
File

 

Fig. 2: Conversion of the training data. 

The speech recognition tools cannot process directly on speech waveforms. These have to 
be represented in a more compact and efficient way. This step is called “acoustical analysis” : 

- The signal is segmented in successive frames (whose length is chosen between 20ms and 
40ms, typically), overlapping with each other. 

- Each frame is multiplied by a windowing function (e.g. Hamming function). 

- A vector of acoustical coefficients (giving a compact representation of the spectral 
properties of the frame) is extracted from each windowed frame. 



HTK Basic Tutorial (Nicolas Moreau)  6 

The conversion from the original waveform to a series of acoustical vectors is done with 
the HCopy  HTK tool: 
 
HCopy  - A  - D  - C anal ysi s. conf   - S t ar get l i st . t xt  
 
anal ysi s. conf  is a configuration file setting the parameters of the acoustical coefficient 
extraction. 
t ar get l i st . t xt  specifies the name and location of each waveform to process, along with 
the name and location of the target coefficient files. 

3.1 Configuration Parameters 
The configuration file is a text file (“#”  can be used to introduce a comment). In this 

tutorial, the following configuration file will be used: 
 
# 
# Exampl e of  an acoust i cal  anal ysi s conf i gur at i on f i l e 
# 
SOURCEFORMAT = HTK  # Gi ves t he f or mat  of  t he speech f i l es 
TARGETKI ND = MFCC_0_D_A  # I dent i f i er  of  t he coef f i c i ent s t o use 
 
# Uni t  = 0. 1 mi cr o- second :  
WI NDOWSI ZE = 250000. 0  # = 25 ms = l engt h of  a t i me f r ame 
TARGETRATE = 100000. 0  # = 10 ms = f r ame per i odi c i t y  
 
NUMCEPS = 12   # Number  of  MFCC coef f s ( her e f r om c1 t o c12)  
USEHAMMI NG = T   # Use of  Hammi ng f unct i on f or  wi ndowi ng f r ames 
PREEMCOEF = 0. 97   # Pr e- emphasi s coef f i c i ent  
NUMCHANS = 26   # Number  of  f i l t er bank channel s 
CEPLI FTER = 22   # Lengt h of  cepst r al  l i f t er i ng 
 
# The End 

List. 1: Analysis configuration file. 
 
With such a configuration file, an MFCC (Mel Frequency Cepstral Coefficient) analysis is 
performed (prefix “MFCC”  in the TARGETKI ND identifier). For each signal frame, the 
following coefficients are extracted: 

- The 12 first MFCC coefficients [c1,…, c12] (since NUMCEPS = 12) 

- The “null”  MFCC coefficient c0, which is proportional to the total energy in the frame 
(suffix “_0”  in TARGETKI ND) 

- 13 “Delta coefficients” , estimating the first order derivative of [c0, c1,…, c12] (suffix 
“_D”  in TARGETKI ND) 

- 13 “Acceleration coefficients” , estimating the second order derivative of [c0, c1,…, c12] 
(suffix “_A”  in TARGETKI ND) 

Altogether, a 39 coefficient vector is extracted from each signal frame. 
 
For more details on acoustical analysis configuration: 
see HTK documentation, p.58-66 (Chap.5, Speech Input/Output). 



HTK Basic Tutorial (Nicolas Moreau)  7 

3.2 Source / Target Specification 
One or more “source file / target file”  pairs (i.e. “original waveform / coefficient file” ) can 

be directly specified in the command line of HCopy . When to many data are to be processed, 
the –S option is used instead. It allows to specify a script file of the form: 
 
 dat a/ t r ai n/ s i g/ yes01. s i g   dat a/ t r ai n/ mf cc/ yes01. mf cc 
 dat a/ t r ai n/ s i g/ yes02. s i g   dat a/ t r ai n/ mf cc/ yes02. mf cc 
  et c. . .  
 dat a/ t r ai n/ s i g/ no01. s i g   dat a/ t r ai n/ mf cc/ no01. mf cc 
 dat a/ t r ai n/ s i g/ no02. s i g   dat a/ t r ai n/ mf cc/ no02. mf cc 
  et c. . .  

List. 2: Conversion script file. 
 

Such a text file can be automatically generated (using a Perl script, for instance). 
The new training corpus (. mf cc  files) is stored in the dat a/ t r ai n/ mf cc/  directory. 
 
For more details on the HCopy  tool: 
see HTK documentation, p.195 (Reference Section, HCopy). 

4 HMM Definition 

In this tutorial, 3 acoustical events have to be modelled with a Hidden Markov Model 
(HMM): “Yes” , “No”  and “Silence” . For each one we will design a HMM. 

The first step is to choose a priori a topology for each HMM: 

- number of states 

- form of the observation functions (associated with each state) 

- disposition of transitions between states 

Such a definition is not straightforward. There is actually no fixed rule for it. 
Here, we will simply choose the same topology for each of the 3 HMMs (Fig.3): 

a22 a33 a44

b2 b3 b4

a23 a34

S2 S3 S4

a55

b5

a45

S5
a24 a35

a12

S1
a13

a56

S6
a56

a22 a33 a44

b2 b3 b4

a23 a34

S2 S3 S4

a55

b5

a45

S5
a24 a35

a12

S1
a13

a56

S6
a56

 

Fig. 3: Basic topology 

The models consist actually of 4 “active”  states { S2, S3, S4, S5} : the first and last states (here 
S1 and S6), are “non emitting”  states (no observation function), only used by HTK for some 
implementation facilities reasons. The observation functions bi are single gaussian 
distributions with diagonal matrices. The transition probabilities are quoted aij. 
 



HTK Basic Tutorial (Nicolas Moreau)  8 

In HTK, a HMM is described in a text description file. The description file for the HMM 
depicted on Fig.3 is of the form: 
 
 ~o <VecSi ze> 39 <MFCC_0_D_A> 
 ~h " yes"  
 <Begi nHMM> 
  <NumSt at es> 6 
  <St at e> 2 
     <Mean> 39 
       0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 
       0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 
       0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 
     <Var i ance> 39 
       1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 
       1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 
       1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 
  <St at e> 3 
     <Mean> 39 
       0. 0 0. 0 ( . . . )  0. 0 
     <Var i ance> 39 
       1. 0 1. 0 ( . . . )  1. 0 
  <St at e> 4 
     <Mean> 39 
       0. 0 0. 0 ( . . . )  0. 0 
     <Var i ance> 39 
       1. 0 1. 0 ( . . . )  1. 0 
  <St at e> 5 
     <Mean> 39 
       0. 0 0. 0 ( . . . )  0. 0 
     <Var i ance> 39 
       1. 0 1. 0 ( . . . )  1. 0 
  <Tr ansP> 6 
       0. 0 0. 5 0. 5 0. 0 0. 0 0. 0 
       0. 0 0. 4 0. 3 0. 3 0. 0 0. 0 
       0. 0 0. 0 0. 4 0. 3 0. 3 0. 0 
       0. 0 0. 0 0. 0 0. 4 0. 3 0. 3 
       0. 0 0. 0 0. 0 0. 0 0. 5 0. 5 
       0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 
 <EndHMM> 

List. 3: HMM description file (prototype). 
 
~o <VecSi ze> 39 <MFCC_0_D_A> 
is the header of the file, giving the coefficient vector size (39 coefficients here), and the type 
of coefficient (MFCC_0_D_A here). 
 
~h " yes"  <Begi nHMM> ( . . . ) <EndHMM> 
encloses the description of a HMM called “yes” . 
 
<NumSt at es> 6 
gives the total number of states in the HMM, including the 2 non-emitting states 1 and 6. 
 
<St at e> 2 
introduces the description of the observation function of state 2. Here we have chosen to use 
single-gaussian observation functions, with diagonal matrices. Such a function is entirely 
described by a mean vector and a variance vector (the diagonal elements of the 
autocorrelation matrix). States 1 and 6 are not described, since they have no observation 
function. 



HTK Basic Tutorial (Nicolas Moreau)  9 

a11 a12 a13 a14 a15 a16 
a21 a22 a23 a24 a25 a26 
a31 a32 a33 a34 a35 a36 
a41 a42 a43 a44 a45 a46 
a51 a52 a53 a54 a55 a56 
a61 a62 a63 a64 a65 a66 

 
<Mean> 39 
0. 0 0. 0 ( . . . )  0. 0   (x 39) 
gives the mean vector (in a 39 dimension observation space) of the current observation 
function. Every element is arbitrary initialised to 0: the file only gives the “prototype”  of the 
HMM (its global topology). These coefficients will be trained later. 
 
<Var i ance> 39 
1. 0 1. 0 ( . . . )  1. 0   (x 39) 
gives the variance vector of the current observation function. Every element is arbitrary 
initialised to 1. 
 
<Tr ansP> 6 
gives the 6x6 transition matrix of the HMM, that is: 
 
 
 
where aij is the probability of transition from state i to state j. Null values indicate that the 
corresponding transitions are not allowed. The other values are arbitrary initialised (but each 
line of the matrix must sum to 1): they will be later modified, during the training process. 
 
Such a prototype has to be generated for each event to model. 
In our case, we have to write a prototype for 3 HMMs that we will call “yes” , “no” , and “sil”  
(with headers ~h " yes" , ~h " no"  and ~h " si l "  in the 3 description files). 
These 3 files could be named hmm_yes , hmm_no, hmm_si l  and be stored in a directory called 
model / pr ot o/ . 
 
For more details on HMM description files: 
see HTK documentation, p.94 (Chap.7, HMM Definition Files). 

5 HMM Training 

The training procedure is described on Fig.4: 

Initialisation
Training

Procedure
Convergence

Test

True

False

Prototype
HMM(0) HMM(i+1)

HMM(N)

i =i +1

i =0
Stop the

process after N 
training iteration

 

Fig. 4: Complete training procedure 

5.1 Initialisation 
Before starting the training process, the HMM parameters must be properly initialised with 

training data in order to allow a fast and precise convergence of the training algorithm. 
HTK offers 2 different initialisation tools: Hi ni t  and HCompv . 



HTK Basic Tutorial (Nicolas Moreau)  10 

HI ni t
pr ot o/

Prototype hmm
hmm0/

Init ialised hmm

HMM
name

Label
name

Training
Corpus

(. mf cc )

Training
Labels
(. l ab)

 

Fig. 5: Initialisation from a prototype. 

HInit 

The following command line initialises the HMM by time-alignment of the training data 
with a Viterbi algorithm: 
 
HI ni t  - A - D –T 1 - S t r ai nl i st . t xt  - M model / hmm0     \  
      - H model / pr ot o/ hmmf i l e - l  l abel  - L l abel _di r    nameof hmm 
 
nameof hmm is the name of the HMM to initialise (here: yes , no, or si l ). 
hmmf i l e is a description file containing the prototype of the HMM called nameof hmm (here: 
pr ot o/ hmm_yes , pr ot o/ hmm_no, or pr ot o/ hmm_si l ). 
t r ai nl i st . t xt  gives the complete list of the . mf cc  files forming the training corpus 
(stored in directory dat a/ t r ai n/ mf cc/ ). 
l abel _di r  is the directory where the label files (. l ab) corresponding to the training corpus 
(here: dat a/ t r ai n/ l ab/ ). 
l abel  indicates which labelled segment must be used within the training corpus (here: yes , 
no, or si l  because have used the same names for the labels and the HMMs, but this is not 
mandatory…) 
model / hmm0 is the name of the directory (must be created before) where the resulting 
initialised HMM description will be output. 
 
This procedure has to be repeated for each model (hmm_yes , hmm_no, hmm_si l ). 
 
Remark: 
The HMM file output by HI ni t  has the same name as the input prototype. 

HCompv 

The HCompv  tool performs a “ flat”  initialisation of a model. Every state of the HMM is 
given the same mean and variance vectors: these are computed globally on the whole training 
corpus. The initialisation command line is in this case: 
 
HCompv - A - D –T 1 - S t r ai nl i st . t xt  - M model / hmm0f l at      \  
       - H model / pr ot o/ hmmf i l e - f  0. 01  nameof hmm 
 
nameof hmm , hmmf i l e , t r ai nl i st . t xt  : see HI ni t . 



HTK Basic Tutorial (Nicolas Moreau)  11 

model / hmm0f l at  : the output directory must be different from the one used with HI ni t  (to 
avoid overwrite). 
 
Remark: the l abel  option can also be used. In that case the estimation of the global mean 
and variance is based on the corresponding labelled parts of the training corpus only. 
 
We won’ t use HCompv  to initialise our models (it was already done with HI ni t ). 
But HCompv  also output, along with the initialised model, an interesting file called vFl oor s , 
which contains the global variance vector multiplied by a factor (see List.4). This factor can 
be set with the - f  option (here: 0. 01). 
 
 ~v var Fl oor 1 
 <Var i ance> 39 
  5. 196781e- 001  2. 138549e- 001 ( . . . )  3. 203219e- 003 

List. 4: Variance floors macro file, vFl oor s . 
 
The values stored in var Fl oor 1 (called the “variance floor macro”) can be used later during 
the training process as floor values for the estimated variance vectors. 
During training iterations, it can happen that the number of training frames associated with a 
particular HMM state is very low. The estimated variance for that state may then have a very 
small value (variance is even null if only one training frame is available). The floor values can 
be used instead in that case, preventing the variance from being to small (and possibly causing 
computation errors). 
Here, we will use HCompv  only once, with any of our HMM prototype, in order to compute 
the var Fl oor 1 macro described above. The corresponding vFl oor s  file is output in 
directory model / hmm0f l at / . 

5.2 Training 

HRest

hmm( i - 1) /
Description f ile hmmi /

Description f ile

HMM
name

Label
name

Training
Corpus

(. mf cc )

Training
Labels
(. l ab)

v Fl oor s
(variance f loor)

 

Fig. 6: A re-estimation iteration. 

The following command line perform one re-estimation iteration with HTK tool HRest , 
estimating the optimal values for the HMM parameters (transition probabilities, plus mean 
and variance vectors of each observation function): 
 
HRest  - A - D - T 1 - S t r ai nl i st . t xt  - M model / hmmi - H vFl oor s   \  
      - H model / hmmi-1/ hmmf i l e - l  l abel  - L l abel _di r    nameof hmm 
 



HTK Basic Tutorial (Nicolas Moreau)  12 

nameof hmm is the name of the HMM to train (here: yes , no, or si l ). 
hmmf i l e is the description file of the HMM called nameof hmm. It is stored in a directory 
whose name indicates the index of the last iteration (here model / hmmi-1/  for example). 
vFl oor s  is the file containing the variance floor macro obtained with HCompv . 
t r ai nl i st . t xt  gives the complete list of the . mf cc  files forming the training corpus 
(stored in directory dat a/ t r ai n/ mf cc/ ). 
l abel _di r  is the directory where the label files (. l ab) corresponding to the training corpus 
(here: dat a/ t r ai n/ l ab/ ). 
l abel  indicates the label to use within the training data (yes , no, or si l ) 
model / hmmi , the output directory, indicates the index of the current iteration i. 
 
This procedure has to be repeated several times for each of the HMM to train. 
Each time, the HRest  iterations (i.e. iterations within the current re-estimation iteration…) are 
displayed on screen, indicating the convergence through the change measure. As soon as this 
measure do not decrease (in absolute value) from one HRest  iteration to another, it’s time to 
stop the process. In our example, 2 or 3 re-estimation iterations should be enough. 
 
The final word HMMs are then: hmm3/ hmm_yes , hmm3/ hmm_no, and hmm3/ hmm_si l . 

6 Task Definition 

Every files concerning the task definition should be stored in a dedicated def / directory. 

6.1 Grammar and Dictionary 
Before using our word models, we have to define the basic architecture of our recogniser 

(the task grammar). We will first define the most simple one: a start silence, followed by a 
single word (in our case “Yes”  or “No” ), followed by an end silence. 

In HTK, the task grammar is written in a text file, according to some syntactic rules. In our 
case, the grammar is quite simple: 
 
 / *  
  *  Task gr ammar  
  * /  
  
 $WORD = YES |  NO;  
  
  (  {  START_SI L }  [  $WORD ]  {  END_SI L }  )  
  

List. 5: Basic task grammar. 
 
The WORD variable can be replaced by YES or NO. 
The brackets { }  around START_SI L and END_SI L denotes zero or more repetitions (a long 
silence segment, or no silence at all before or after the word are then allowed). 
The brackets [] around $WORD denotes zero or one occurrence (if no word is pronounced, it’s 
possible to recognise silence only). 
 
For more details on HTK syntactic rules: 
see HTK documentation, p.163 (Chap.12, Networks, Dictionaries and Language Models). 



HTK Basic Tutorial (Nicolas Moreau)  13 

 
The system must of course know to which HMM corresponds each of the grammar variables 
YES, NO, START_SI L and END_SI L. This information is stored in a text file called the task 
dictionary. In such a simple task, the correspondence is straightforward, and the task 
dictionary simply encloses the 4 entries: 
 
 YES        [ yes]   yes 
 NO         [ no]    no 
 START_SI L  [ s i l ]   s i l  
 END_SI L    [ s i l ]   s i l  
 

List. 6: Task dictionary. 
 
The left elements refer to the names of the task grammar variables. The right elements refer to 
the names of the HMMs (introduced by ~h in the HMM definition files). The bracketed 
elements in the middle are optional, they indicate the symbols that will be output by the 
recogniser: the names of the labels are used here (by default, the names of the grammar’s 
variables would have been used.) 
 
Remark: 
Don’ t forget the new line at the end of the file (if not, the last entry is ignored). 

6.2 Network 
The task grammar (described in file gr am. t xt ) have to be compiled with tool HPar se, to 

obtain the task network (written in net . s l f ): 
 
HPar se - A - D - T 1   gr am. t xt    net . s l f  
 
At this stage, our speech recognition task (Fig.7), completely defined by its network, its 
dictionary, and its HMM set (the 3 models stored in model / hmm3/ ), is ready for use. 

HMM: yesHMM: yes

HMM: noHMM: no

HMM: si lHMM: si lHMM: si l

START_SI L END_SI L

YES

NO

 

Fig. 7: Recogniser = Network + Dictionary + HMMs 

Remark: 
To be sure that no mistakes were made when writing the grammar, the tool HSGen can be 
used to test it: 
 



HTK Basic Tutorial (Nicolas Moreau)  14 

HSGen - A - D  - n 10  - s net . s l f   di ct . t xt  
 
Where di ct . t xt  is the task dictionary. Option - n indicates that 10 grammatically conform 
sentences (i.e. 10 possible recognition results) will be randomly generated and displayed. 
Of course, it’s not very useful here, but when grammars get more complicated, that can be 
very helpful… 

7 Recognition 

HVi t e
Input Signal

(. si g)
Transcription

( . ml f )

Network
. sl f

Input Signal
(. mf cc )HCopy

Configuration
File

Script
File

HMMs
( . mmf )

Dictonary
HMM
List

 

Fig. 8: Recognition process of an unknown input signal. 

Let’s come to the recognition procedure itself: 

- An input speech signal i nput . s i g is first transformed into a series of “acoustical 
vectors”  (here MFCCs) with tool HCopy , in the same way as what was done with the 
training data (Acoustical Analysis step). The result is stored in an i nput . mf cc  file (often 
called the acoustical observation). 

- The input observation is then process by a Viterbi algorithm, which matches it against the 
recogniser’s Markov models. This is done by tool HVi t e: 

 
HVi t e - A - D - T 1  - H hmmsdef . mmf   - i  r eco. ml f   - w net . s l f    \  
      di ct . t xt   hmml i st . t xt   i nput . mf cc 
 
i nput . mf cc  is the input data to be recognised. 
hmml i st . t xt  lists the names of the models to use (yes , no, and si l ). Each element is 
separated by a new line character. Don’ t forget to insert a new line after the last element. 
di ct . t xt  is the task dictionary. 
net . s l f  is the task network. 
r eco. ml f  is the output recognition transcription file. 
hmmsdef . mmf  contains the definition of the HMMs. It is possible to repeat the - H option and 
list our different HMM definition files, in our case: 
- H model / hmm3/ hmm_yes  - H model / hmm3/ hmm_no  - H model / hmm3/ hmm_si l  
but it is more convenient (especially when there are more than 3 models) to gather every 
definitions in a single file (called a Master Macro File, with extension .mmf ). Such a file is 
simply obtained by copying each definition after the other in a single file, without repeating 
the header information (see List.7). 



HTK Basic Tutorial (Nicolas Moreau)  15 

 
 ~o <VecSi ze> 39 <MFCC_0_D_A> 
 ~h " yes"  
 <Begi nHMM> 
             (definition...) 
 <EndHMM> 
 ~h " no"  
 <Begi nHMM> 
             (definition...) 
 <EndHMM> 
 ~h " s i l "  
 <Begi nHMM> 
             (definition...) 
 <EndHMM> 

List. 7: Master Macro File (several HMM description in 1 file). 
 
The output is stored in a file (r eco. ml f ) which contains the transcription of the input. If we 
use the file dat a/ t r ai n/ mf cc/ yes01. mf cc  as input data, for instance, we will get in 
r eco. ml f  such an output: 
 
 #! MLF! # 
 " . . / dat a/ t r ai n/ mf cc/ yes01. r ec"  
 0 4900000 SI L - 2394. 001465 
 4900000 12000000 YES - 5159. 434570 
 12000000 18300000 SI L - 3289. 197021 
 .  

List. 8: Recognition output (recognised transcription). 
 
In this example, 3 successive “word hypotheses”  are recognised within the input signal. The 
target word “Yes”  is correctly recognised. The start and end points of each hypothesis are 
given, along with their acoustic scores, resulting from the Viterbi decoding algorithm (right 
column). 
 
A more interactive way of testing the recogniser is to use the “direct input”  options of HVi t e: 
 
HVi t e - A - D - T 1  - C di r ect i n. conf   - g  - H hmmsdef . mmf     \  
      - w net . s l f   di ct . t xt   hmml i st . t xt  
 
No input signal argument or output file are required in this case: a prompt READY[ 1] > 
appears on screen, indicating that the first input signal is recorded. The signal recording is 
stopped by a key-press. The recognition result is then displayed, and a prompt READY[ 2] > 
waiting for a new input immediately appears. 
- g option allows to replay each input signal once. 
di r ect i n. conf  is a configuration file for HVi t e, allowing the use of direct audio input: 
 
# 
# HVi t e Conf i gur at i on Var i abl es f or  DI RECT AUDI O I NPUT 
# 
 
# Par amet er s of  t he i nput  s i gnal  
SOURCERATE = 625. 0 # = 16 kHz 
SOURCEKI ND = HAUDI O 
SOURCEFORMAT = HTK 
 



HTK Basic Tutorial (Nicolas Moreau)  16 

# Conver si on par amet er s of  t he i nput  s i gnal  
TARGETKI ND = MFCC_0_D_A  # I dent i f i er  of  t he coef f i c i ent s t o use 
WI NDOWSI ZE = 250000. 0  # = 25 ms = l engt h of  a t i me f r ame 
TARGETRATE = 100000. 0  # = 10 ms = f r ame per i odi c i t y  
NUMCEPS = 12   # Number  of  MFCC coef f s ( her e f r om c1 t o c12)  
USEHAMMI NG = T   # Use of  Hammi ng f unct i on f or  wi ndowi ng f r ames 
PREEMCOEF = 0. 97   # Pr e- emphasi s coef f i c i ent  
NUMCHANS = 26   # Number  of  f i l t er bank channel s 
CEPLI FTER = 22   # Lengt h of  cepst r al  l i f t er i ng 
 
# Def i nes t he s i gnal  t o be used f or  r emot e cont r ol  
AUDI OSI G = - 1   # Negat i ve val ue = key- pr ess cont r ol  
 
# The End 

List. 9: Configuration file for direct input recognition. 
 
In order to allow direct extraction of the acoustical coefficients from the input signal, this file 
must contain the acoustical analysis configuration parameters previously used with the 
training data. 

8 Performance Test 

The recognition performance evaluation of an ASR system must be measured on a corpus 
of data different from the training corpus. A separate test corpus, with new “Yes”  and “No”  
records, can be created in the dat a/ t est /  directory as it was previously done with the 
training corpus. Once again, these data (stored in sub-directory t est / s i g) have to be hand-
labelled (storage in t est / l ab) and converted (storage in t est / mf cc). 
(If you don’ t feel excited by the perspective of a new fastidious recording and labelling 
session, the training corpus may be used as test corpus here, since this tutorial’s goal is just to 
learn how to use some HTK tools, not to get relevant performance measures…) 

8.1 Master Label Files 
Before measuring the performance, we need to create 2 files (called Master Label Files, 

with extension .ml f ): 

- The first one will contain the “correct”  transcriptions of the whole test corpus, that is, the 
transcriptions obtained by hand-labelling. Let’s call r ef . ml f  these reference 
transcriptions. 

- The second one will contain the recognised transcriptions of the whole test corpus, that is, 
the hypothesised transcriptions yielded by the recogniser. Let’s call r ec. ml f  these 
recognised transcriptions. 

The performance measures will just result from the comparison between the reference 
transcription and the recognition hypothesis of each data. 

A Master Label File has the following structure: 
 



HTK Basic Tutorial (Nicolas Moreau)  17 

 #! MLF! # 
 " pat h/ dat a01. ext "  
 Label 1 
 Label 2 
 .  
 " pat h/ dat a02. ext "  
 Label 1 
 Label 2 
 Label 3 
 Label 4 
 .  
  ( ETC. . . )  

List. 10: Master Label File (several transcriptions in 1 file). 
 
Each transcription is introduced by a file name and terminated by a period “ . ” . A 
transcription consists of a sequence of labels separated by new-line characters. Optionally, 
each label can be preceded by start and end time indexes and /or followed by a recognition 
score (see List.8). 

There is no HTK tool to create the reference transcription file r ef . ml f . It must be written 
manually or with a script (see the MakeRef MLF. pl  Perl script that I wrote, for instance). 
The content of each label file (e.g. yes01. l ab) has to be copied sequentially in r ef . ml f , 
between the line giving the file name (e.g. ” * / yes01. l ab” : the path can be here replaced by 
a * ) and the closing period. 

The recognised transcription file r ec. ml f  can be obtained directly with HVi t e. This time 
HVi t e does not take a single input file name as argument, but the file names (. mf cc) of the 
entire test corpus, listed into a text file: 
 
HVi t e - A - D - T 1  - S t est l i st . t xt   - H hmmsdef . mmf   - i  r ec. ml f   \  
      - w net . s l f   di ct . t xt   hmml i st . t xt  
 
hmml i st . t xt , di ct . t xt , net . s l f , hmmsdef . mmf : the same as previously. 
r ec. ml f  is the output recognition transcription file. 
t est l i st . t xt  lists the names of the test files (dat a/ t est / * . mf cc). 
 
After execution of the command, r ec. ml f  contains a series of transcription such as the one 
listed in List.8. Each transcription is introduced by the corresponding file name with a 
different extension (. r ec  instead of . l ab). 

8.2 Error Rates 
The r ef . ml f  and r ec. ml f  transcriptions are compared with the HTK performance 

evaluation tool, HResul t s : 
 
HResul t s - A - D - T 1  - e ??? si l   - I  r ef . ml f       \  
         l abel l i st . t xt   r ec. ml f   >  r esul t s. t xt  
 
r esul t s. t xt  contains the output performance statistics (example: List.11). 
r ec. ml f  contains the transcriptions of the test data, as output by the recogniser. 
l abel l i st . t xt  lists the labels appearing in the transcription files (here: yes , no, and si l ). 
r ef . ml f  contains the reference transcriptions of the test data (obtained by hand-labelling). 



HTK Basic Tutorial (Nicolas Moreau)  18 

- e ??? si l  option indicates that the si l  labels will be ignored when computing the 
performance statistics (since we are interested in the recognition rate of words “Yes”  and “No”  
only). 
 
 
  ====================== HTK Resul t s Anal ysi s ======================= 
    Dat e:  Tue Dec 03 19: 12: 58 2002 
    Ref  :  . \ r ef . ml f  
    Rec :  . \ r ec. ml f  
  - - - - - - - - - - - - - - - - - - - - - - - -  Over al l  Resul t s - - - - - - - - - - - - - - - - - - - - - - - - - -  
  SENT:  %Cor r ect =80. 00 [ H=8,  S=2,  N=10]  
  WORD:  %Cor r =80. 00,  Acc=80. 00 [ H=8,  D=0,  S=2,  I =0,  N=10]  
  =================================================================== 
 

List. 11: Results of a performance test. 
 
List.11 shows an example of the kind of results that can be obtained. The first line (SENT) 
gives the sentence recognition rate (%Cor r ect =80. 00), the second one (WORD) gives the 
word recognition rate (%Cor r =80. 00). 

In our case, the 2 rates are the same because our task grammar only allows “sentences”  
with one single word (apart from silences). It is an isolated words recognition task. Only the 
first line (SENT) should be considered here. H=8 gives the number of test data correctly 
recognised, S=2 the number of substitution errors (a “Yes”  recognised as “No” , or a “No”  as 
“Yes” ) and N=10 the total number of test data. 

The statistics given on the second line (WORD) only make sense with more sophisticated 
types of recognition systems (e.g. connected words recognition tasks). For more details: 
see HTK documentation, p.232 (Reference Section, HResults). 

 



Hidden Markov Models (HTK)
Jan Černocký, FIT VUT Brno

This exercise deals with the isolated-word recognition using HMM. We will use the HTK toolkit from University
of Cambridge (UK).

1 HTK

serves to define, train and recognize speech using HMM and contains tools for parameterization (feature ex-
traction), evaluation of results, pronunciation dictionaries, and others. HTK is written in C-language and for
non-commercial use, it can be downloaded from:
http://htk.eng.cam.ac.uk/
In this exercise, we will use a set of pre-compiled programs that we will run from the command line of Windows
operating system:

• HCopy - as the name says, it should copy. While copying however, it can perform a conversion of speech
data, for example from signal samples to MFCC vectors. The behavior is controlled by a configuration file.

• HList - visualizes (as text) a file with feature vectors.

• HCompV - initializes parameters of emission probability distribution functions (PDFs) in HMM states to
global values for given word.

• HRest - retraining of model. It computes the values of the “soft” function assigning vectors to states (state
occupation likelihood), followed by re-estimation of model parameters.

• HParse - converts human-readable form of recognition network to human-unreadable HTK format.

• HVite - Viterbi decoder or recognizer. For an unknown word, it computes the Viterbi probability of all
models and finds the maximum. The model that “emitted” the given word with the maximum probability,
wins.

• HResults - a tool for evaluation of recognition results – based on the correct transcriptions, it computes
the word accuracy.

Running any of the programs without parameters shows a brief help.

2 The task

Create a speaker-independent recognizer for isolated words ANO/NE (yes/no in Czech). For the training, use
data from 60 speakers from the Czech database “Č́ıslovky” (each speaker has uttered both “ano” and “ne”). For
testing, use data from 20 speakers.

Parameterization (feature extraction) should be done using 12 MFCC (Mel-frequency cepstral) coefficients
and log-energy (in HTK notation MFCC E). Complete the feature vector by the approximations of the 1st and
2nd derivative (∆ and ∆∆ coefficients, in HTK notation MFCC E D A). Set the frame-length to 25 ms, and the
frame shift to 10 ms, you will therefore obtain 100 feature vectors per second.

Models will have left-right architecture, without state-skips. From i-th state, only transitions to i-th state and
to (i + 1)-th state are allowed. The models will have 7 states in total. The first and last are special non-emitting,
there will therefore be 5 emitting states. The probability distribution function (PDF) in states will be a single
Gaussian with diagonal covariance matrix. One PDF will therefore be described by a vector of 39 mean values
and a vector of 39 variances.

3 Solution and comments

This section contains complete solution of the task. Details on the creation of lists, MLF files, etc., are in the
enclosed README file1.

1Many of the commands in README file will, however, run only under UNIX operating system. . .
1



Practical comments

Copy the contents of .................. to arbitrary local directory on your computer. The subdirectories contain:

• cfg — configuration files for HTK programs.

• dics — dictionaries.

• net — word networks for the recognition.

• lists — lists of models.

• proto — prototypes of models.

• hmm0 — models initialized using HCompV.

• hmm1 — models retrained using HRest.

• data — speech in raw format: no header, Fs=8000 Hz, 16-bit lin. Files with MFCC coefficients will be
generated to the same directories. Files *a0.raw contain ANO, files *a1.raw contain NE.

• mlf — speech data transcriptions in Master-Label files.

• scripts — lists of files for HTK. The name ’scripts’ is a bit misleading (scripts are usually batches of
commands for operating system, for example *.bat under DOS). This notation is unfortunately common in
the documentation of HTK, so that we will use it here, too.

Open a window with a command line (here, you will run HTK programs) and a File manager (for modifications
and visualizations of text files).

3.1 Parameterization (Feature Extraction)

• Study the configuration file cfg\hcopy.conf:

BYTEORDER = VAX the byte order will be Intel-PC
SOURCEKIND = WAVEFORM
SOURCEFORMAT = NOHEAD header-less files
SOURCERATE = 1250 sampling period is 1250×100 ns = 1/8000
ZMEANSOURCE = FALSE no removal of DC offset

TARGETKIND = MFCC_E type of output features: MFCC and log-energy
TARGETFORMAT = HTK
TARGETRATE = 100000 sampling period of output feature vectors (frame shift) will be 10 ms
WINDOWSIZE = 250000.0 frame length 25 ms
NUMCHANS = 24 number of triangular filters used for the computation of MFCC
ENORMALISE = TRUE energy will be normalized.

• Study script-files scripts\train.scp a scripts\test.scp.

• Run the feature extraction for both training and test sets:
HCopy -T 1 -C cfg\hcopy.conf -S scripts\train.scp
HCopy -T 1 -C cfg\hcopy.conf -S scripts\test.scp

• Visualize one of created feature files as text (using HList) and in Matlab using readhtk.m function.

4 Model training

4.1 Initialization

• Study the prototypes of models in directory proto. Note, that allowed and forbidden transitions are “hard-
wired” in the matrix of transition probabilities at the end of each model. Mean values are set to 0, variances
to 1.

• Study the Master-Label file mlf\train.mlf The numbers before the label stand for beginning and end of
file in hundreds of ns. For one file, check, if the length recorded in MLF corresponds to the file-size:
time[100ns] = # of bytes / 2 / 8000 / 100×10−9.

2



• Note, that the configuration file for model initialization cfg\hcompv.conf contains only one line:
TARGETKIND=MFCC_E_D_A
This means, that MFCC and energy coefficients (already on the disk in *.mfc files), will be on-line completed
with ∆ a ∆∆ coefficients.

• Look at the script-file scripts\train_htk.scp

• Run the initialization for both models:
HCompV -T 7 -I mlf\train.mlf -l ANO -C cfg\hcompv.conf

-m -S scripts\train_htk.scp -M hmm0 proto\ANO
HCompV -T 7 -I mlf\train.mlf -l NE -C cfg\hcompv.conf

-m -S scripts\train_htk.scp -M hmm0 proto\NE

• Study resulting models in directory hmm0. What has changed?

4.2 Re-training of models

• Note, that the configuration file for re-training cfg\hrest.conf contains again only one line:
TARGETKIND=MFCC_E_D_A

• Run the re-training of both models:
HRest -T 7 -I mlf\train.mlf -l ANO -C cfg\hrest.conf

-S scripts\train_htk.scp -M hmm1 hmm0\ANO
HRest -T 7 -I mlf\train.mlf -l NE -C cfg\hrest.conf

-S scripts\train_htk.scp -M hmm1 hmm0\NE

• Study resulting models in directory hmm1. What do you observe?

5 Recognition and evaluation

5.1 What else will we need

The results of training are two trained models in directory hmm1. We will however need a couple of other things:

• List of models. See file lists\models.

• Pronunciation dictionary. This dictionary contains the transcription of words in terms of models. In case
we used smaller units (phonemes), it would contain for example: ANO=A N O. In our case, one word is
modeled by one model, the pronunciation dictionary is therefore trivial: dics\dictionary.

• Recognition network. This network determines allowed sequences of words at the output of the recognizer.
For us, this is ANO or NE. Hand-made and human-readable recognition network is in file: net\oldnetwork.
For HTK, it is necessary to convert it to a human-unreadable form using:
HParse net\oldnetwork net\network

5.2 Recognition

for unknown files, it produces a transcription and stores it to MLF-file mlf\testout.mlf. The recognition is run
using:
HVite -T 1 -C cfg\hvite.conf -d hmm1 -S scripts\test_htk.scp

-i mlf\testout.mlf -w net\network dics\dictionary lists\models

• Look at the recognition results in the resulting Master Label file.

5.3 Evaluation

We are interested in the quality of the recognizer. In this experiment, we have a reference MLF with the correct
transcription of test files: mlf\test.mlf. This can be compared to HVite output using:
HResults -I mlf\test.mlf lists\models mlf\testout.mlf
The most important number in the output of HResults is Acc= (word accuracy). How many % did you reach?

3



6 And more. . .

1. Record yourself a set of 10 WAV-files (8 kHz, 16 bit) containing ANO. For HCopy, use configuration file
hcopy_wav.conf, which allows for reading of WAV-files. Create your own script-files for feature extraction
and for the recognition. Create your own reference MLF file (in case MLF is used only as a reference for
HResults, it is not necessary to fill the beginning and end times). Extract the features using HCopy and
recognize using HVite. Evaluate the recognition accuracy using HResults. How many % did you reach?

2. In Matlab, add white noise to your files so that the signal-to-noise ratio (SNR) is 0 dB. You may for example
move the original files to xx_clean.wav and then use the following sequence of Matlab-commands:

SNR = 0;
[s,fs,nbit] = wavread(’xx_clean.wav’);
s = s’ - mean(s);
E = sum(s.^2) / length(s); % energy of the signal
Enoise = E / 10^(SNR/10); % energy of the noise
n = randn(1,length(s)) * sqrt(Enoise); % generating the noise
wavwrite (s + n, fs, nbit,’xx.wav’); % writing signal+noise to disk

Listen to the resulting files (note, that for SNR=0 dB, the energy of noise is the same as the energy of
signal!). Extract MFCC features, recognize and evaluate the word accuracy. What is your result?

4


