
EE627 � Term Project : Jul. 2013 Semester

August 12, 2013

Title : Build and demonstrate a real time contin-
uous digit recognition system in English

Assigned to : Batch No. 9

TAs Assigned : Lalan. He is Available @ACES 203
MiPS Lab EE Department. email : lalank@iitk.ac.in

Objective :

The objective of this project is to build a continous digit recognition system. A
real time digit recognition needs to be built using the MONC database. Exper-
imental results for speech recognition in terms of word error rate (WER) also
need to be provided.

Methodology To Be Followed :

The methodlolgy need to be followed for performing the recogniton experiments
are as follows:

• The module 'Print_feature' writes features of each single sound �le. This
is useful to avoid recomputing features in the embedded training proce-
dure.

• The module 'endpoint_feature' does the same as Print_feature but elim-
inates silences.

• The module 'Print_phon_feature' writes features of the required �les
where all the same phonemes of all the �les are collected in one �le, i.e. one
output feature �le for each phoneme. This is required for non-embedded
training.

• The module 'initiali initializes' the HMMmodels. HMMmodel parameters
are evaluated according to a clustering procedure.

1

• The module 'training' re-estimates HMM models phoneme per phoneme
using the Baum�Welch algorithm. The bounds of each phoneme within
the utterances are required, i.e. segmentation of all the training speech
data.

• The module 'embedded' re-estimates HMM models per utterance using
the Baum�Welch algorithm. Segmentation is not required.

• The module 'lessico' estimates language model parameters according to
various algorithms.

• The module 'recog ' performs phoneme/word recognition.

• The module 'eval_rec' evaluates accuracy of word/phoneme recognition.

Database for Training

The database used for training or testing is MONC database. The MONC is de-
rived from the Numbers Corpus release 1.0, prepared by the Center for Spoken
Language Understanding at the Oregon Graduate Institute. The general strat-
egy used to acquire the MONC was to playback utterances from the original
Numbers corpus on one or more loudspeakers, and record the resulting sound
�eld with lapel microphones, a single tabletop microphone, and a tabletop mi-
crophone array. The MONC database is available at MiPS Lab. Please contact
the TA assigned for the same.

Tools To Be Used

The Tools to be used to implement this term project is the C++. The details
of download, installation, and usage are available at the respective TA.

Deliverables/ Submissions

The deliverables or submission procedures for the term project are as follows:

• Presentations and Report : Two set of presentations is required for every
batch in this term project. The �rst presentation will be scheduled before
mid sem and the second presentation will be scheduled before end sem.
The marks will be distributed separately for two presentation. Addition-
ally a report needs to be submitted detailing the project.

• System Demo in real time : The demonstration of the project is needed to
be carried out by each batch. The demonstration includes the real time
presentation of the working model for recognition system.

• Code/script submissions : The code or script has to be submitted by each
batch which will include complete details of the project.

2

Other Useful Links

The other useful links that might be helpful in preparation of the code or script
are as follows

• C++ Code : available at respective TAs

3

Recognition Experimental System

1 INTRODUCTION

This CD contains the Recognition Experimental System (RES) software version
6.0 19/11/98. The software is distributed only with the book: Speech
Recognition: Theory and C++ Implementation, written by Claudio Becchetti
and Lucio Prina Ricotti, published by John Wiley & Sons, and contains the
whole C++ code of the phoneme/word multi-speaker continuous speech
recognition system (Initialization Training Recognition Evaluation). It can be
also adapted to other tasks (for example, prediction of time series such as stock
exchange movements). To install the software, please remember to read section
2.2 carefully.

2 CD ORGANIZATION

In the CD, there are four main directories: Source, Test_Me, Projects, and
Sndfile. Their contents are:

� Source: contains C++ source code files organized into directories
corresponding to projects (the same applies to Linux MS-DOS
and Windows).

� Test_Me: contains two ready-to-use examples for MS-DOS/Windows and
Linux. The first directory (“Phoneme”) contains an example of
phoneme recognition on TIMIT. Run “Start_Me.bat” for MS-
DOS/Windows platforms and “Start_Me.lnx” for Linux.

2 Recognition Experimental System: read_me

The second directory “Word_Rec” concerns word recognition on
ATIS. As in the previous case, run “ Start_Me.bat” for MS-
DOS/Windows platforms and “ Start_Me.lnx ” for Linux.

� Projects: This directory contains the projects and make-files. It has three
subdirectories: “projectMS”, “projectDjGpp” and “Proj_Lnx”
each containing the projects of the programs for MS Visual 5.0,
RHIDE and Dj Gpp on PC MS-DOS/Windows and RHIDE and
Gpp on Linux. RHIDE is a graphic integrated development
environment; see section 3 for further details. Make files are also
included in the homonymous directories.

� Sndfile: This directory contains only some ATIS and TIMIT sound and
label files that belong to the LCD Consortium. These files have
been adapted to the Microsoft MS RIFF standard (i.e. that used
by the common *.wav files) from the original NIST 1A standard
to allow easy handling.

2.1 Projects

In each of the three subdirectories there are the same projects. There are two
types of projects. The “test example projects” are used to test foundation
libraries. These projects are also useful since they show practical applications
of the foundation libraries. The other projects refer to programs concerning
speech recognition. The directory where the project is located coincides with
the directory where the main source files can be found.

The test example projects are (Chapter indicates where the subject is
covered):

Project Directory Chapter Description

baseclas_polymorf baseclas 2 This project tests the class implementing
polymorphism. This class is used to implement
“drivers” that handle different databases
(Chapter 2) or different DSP operations
(Chapter 3).

baseclas_testbase baseclas 1,2 This project tests the classes handling memory
and strings. The class handling memory is the
root class from which all the other classes are
derived. The project also tests the diagnostics.

ioclass ioclass 2 This project tests the class that retrieves data
from speech databases.

feature feature 3 This project tests the class that performs
feature extraction. This class is designed to
perform arbitrary sequences of digital signal
processing on the input sequence according to
the configuration file.

resconf resconf 2 This project tests the class that handles
configuration services.

utils utils 1 This project shows a simple program that

CD Organization 3

performs arbitrary sequences of operations on
a list of files according to the configuration
file. The implemented operations are utilities
for conversion from MS-DOS to Unix.

vetclas vetclas 4 This project shows and tests the mathematical
operations over vectors, diagonal matrices and
full matrices.

The projects related to programs specifically required for speech recognition
are:

Project Chapter Purpose

Print_feature 3,8 This project writes features of each single sound file.
This is useful to avoid recomputing features in the
embedded training procedure.

endpoint_feature 3,8 This project does the same as Print_feature but
eliminates silences.

Print_phon_feature 3,8 This project writes features of the required files where
all the same phonemes of all the files are collected in
one file, i.e. one output feature file for each phoneme.
This is required for non-embedded training.

initiali 4 This project initializes the HMM models. HMM
model parameters are evaluated according to a
clustering procedure.

training 5 This project re-estimates HMM models phoneme per
phoneme using the Baum–Welch algorithm. The
bounds of each phoneme within the utterances are
required, i.e. segmentation of all the training speech
data.

embedded 5 This project re-estimates HMM models per utterance
using the Baum–Welch algorithm. Segmentation is not
required.

lessico 6 This project estimates language model parameters
according to various algorithms.

recog 7 This project performs phoneme/word recognition.
segmen 8 This project performs phonetic segmentation.
eval_rec 8 This project evaluates accuracy of word/phoneme

recognition.
eval_segm 8 This project evaluates accuracy of segmentation.

2.2 Installation

To install the software, copy the directories according to use, the
compiler/platform, and the table below. Files are pointed using relative
positions and therefore no problems should be encountered with the relative
position of the directories. Moreover, since the CD-ROM files have attribute
“read-only”, after copying files on a hard disk, remember to set files-
permissions to read and write.

4 Recognition Experimental System: read_me

For example, to run the demos only, copy the whole directories
“Test_me” and “Sndfile” in a directory say “RES”, then set all the file attributes
to Read and Write. Finally, execute in the directory “Test_me/Phoneme” the
file Start_me.bat or Start_me.lnx for MS-Windows or Linux systems
respectively. Some files will be created with the results and performance.

 directory to copy->
use

Test_me Source,
SndFile

projects/
project_ms/
ms_make

projects/
project_ms

projects/
project_DjGpp

projects/
Proj_lnx

only demo ×
command line compilation
with MS compiler

× × ×
IDE (graphic) MS compiler × × ×
command line compilation
with DjGpp

× × use make-files
located in the
directories of
the correspon-
ding projects.

RHIDE graphic environment
with DjGpp

× × ×
RHIDE graphic environment
with Linux

× × ×

2.3 Compilation

Files have been compiled under Gpp versions 2.8.0 or later in the porting of
Delorie for MS-DOS. PREVIOUS VERSIONS DO NOT WORK due to some
non-standard implementation of templates. The integrated environment Rhide
has also been used. Pay attention to DjGpp Rhide, Windows 95 and long file
names. These work when proper installation of compilers is carried out and
options have the right values LFN = Y in the djgpp.env file and execute “rhide
–y”. In any case you can disable long file names by setting LFN = N and
executing rhide with “rhide –n”

Files have been also compiled with MS Visual C++ 5.0. Other
platforms/compilers have been also used such as Linux Gpp version >2.8.0,
Borland >=4.51, MS Visual C++ 4.0. Porting on different platform/compilers
should not be critical taking into consideration the differences between file
systems.

Finally remember that in Linux/Unix, lines of text files terminate with a
simple line feed (\n == char (10)) while in MS-DOS lines terminate with a
cursor return followed by a line feed (\r \n == chr(13) + chr(10)). Therefore, in
text files produced by MS-DOS programs cursor return should be eliminated
when the same files are to be used in Linux. To achieve this, the program
util.exe or other similar programs such as DOS2UNIX can be used.

Copyright 5

3 COPYRIGHT

RES 6.0 is copyright (C) 1998 distributed with the book Speech Recognition:
Theory and C++ Implementation, by Claudio Becchetti and Lucio Prina
Ricotti. See copyright.txt file for further information on copyright.

DjGpp is the porting of Gpp for MS-DOS. Copyright (C) DJ Delorie 24 Kirsten
Ave Rochester NH 03867-2954, available at http://www.delorie.com/

Rhide is an integrated graphic environment for MS-DOS Windows
NT/95/3.X/Linux that can be obtained at http://www.tu-
chemnitz.de/~sho/rho/rhide/rhide.html or also at http://www.delorie.com/.
RHIDE is copyright (C) 1996, 1997 by Robert Hoehne.

4 FUTURE DEVELOPMENTS

We are currently testing the adaptation module to create models adapted to a
specific speaker or a given database given the multi-speaker models (see
Chapter 5, Maximum A Posteriori adaptation, for reference). This module will
be distributed on the Web (see www.fub.it/res).

We are also testing a new recognition module based on a tree structure (see
Chapters 7 and 8). These modules are finalized to create a real-time recognition
module. The actual module is many times slower than real time. We hope also
that independent users will help us in developing RES. In this case, we will be
happy to include the new software on our Web (www.fub.it/res) server if
required.

5 WHAT TO DO WITH RES SOFTWARE

Currently, RES is a laboratory tool useful for testing new research ideas or as a
start-up for commercial applications. The latter use will be more attractive
when the real-time recognition module is available. As a laboratory tool, RES is
also used to compute new models suited for particular applications. Software
solutions implemented in RES are also of interest. RES has been developed
according to the conservative strategy that, in our experience, has allowed faster
development of more robust software even for inexperienced programmers such
as our students (see Chapter 1 for details). In such a method of programming,
pointers are never used (as happens in Java), while efficiency remains
comparable with respect to software using pointers. The main services
generally required for any large mission-critical software are also covered. See,
for example, Chapter 1 for memory diagnostic and configuration services;
Chapter 2 for mathematics and Chapter 3 for digital signal processing issues.

6 Recognition Experimental System: read_me

6 FILE INDEX

The following are the source files and the directories contained in the Source
directory. The source files are used for different platforms and compilers.

1) baseclas baseclas.cpp
2) baseclas Baseclas.h
3) baseclas Baseclas.hpp
4) baseclas Boolean.h
5) baseclas Compatib.h
6) baseclas Defopt.h
7) baseclas Diagnost.cpp
8) baseclas Diagnost.h
9) baseclas Polymorf.cpp
10) baseclas Polymorf.h
11) baseclas Polytest.cpp
12) baseclas Testbase.cpp
13) baseclas Textclas.cpp
14) baseclas Textclas.h
15) embedded Emb_b_w.cpp
16) embedded Emb_b_w.h
17) embedded Emb_Train.cpp
18) eval_rec evalopt.cpp
19) eval_rec evalopt.h
20) eval_rec Evaluate.cpp
21) eval_rec Evaluate.h
22) eval_rec eval_rec.cpp
23) eval_segm eval.cpp
24) eval_segm eval.h
25) eval_segm main_eval.cpp
26) features DSPPROC.CPP
27) features endpoint.cpp
28) features Feature.cpp
29) features Feature.h
30) features mean_feature.cpp
31) features print_file_feat.cpp
32) features print_ph_feat.cpp
33) features Test_feature.cpp
34) Initiali Iniopt.cpp
35) Initiali Iniopt.h
36) Initiali Initiali.cpp
37) Initiali Initiali.h
38) Initiali Proiniti.cpp
39) ioclass labelcl.cpp
40) ioclass labelcl.h
41) ioclass Soundfil.cpp

File Index 7

42) ioclass Soundfil.h
43) ioclass Soundlab.cpp
44) ioclass Soundlab.h
45) ioclass TESTIONE.CPP
46) ioclass Test_MsWav.cpp
47) lessico lessico.cpp
48) lessico lessico.h
49) lessico lexopt.cpp
50) lessico lexopt.h
51) lessico main_lessico.cpp
52) recog hypolist.cpp
53) recog Hypolist.h
54) recog Hypolist.hpp
55) recog recog.cpp
56) recog recopt.cpp
57) recog recopt.h
58) resconf resconf.cpp
59) resconf Resconf.h
60) resconf TESTCONF.CPP
61) segment Hypolist.cpp
62) segment Hypolist.h
63) segment hypolist.hpp
64) segment hypolistseg.cpp
65) segment Segment.cpp
66) segment Segopt.cpp
67) segment Segopt.h
68) training Baumwelc.cpp
69) training Baumwelc.h
70) training Protrain.cpp
71) tspecmod testtspecbase.cpp
72) tspecmod Tspecbas.cpp
73) tspecmod Tspecbas.h
74) tspecmod Tspecbas.hpp
75) utils multifop.cpp
76) utils multifop.h
77) vetclas Arraycla.cpp
78) vetclas Arraycla.h
79) vetclas Arraycla.hpp
80) vetclas Diagclas.cpp
81) vetclas Diagclas.h
82) vetclas Diagclas.hpp
83) vetclas Testvet.cpp
84) vetclas Vetclas.cpp
85) vetclas Vetclas.h
86) vetclas Vetclas.hpp

