Hidden Markov Models for Automatic Speech Recognition Part II

R. Hegde

EE627: Speech Signal Processing Dept. of Electrical Engg.

Problem (2) - Learning Problem

How do we adjust model parameters λ to maximize $P(\mathcal{O}|\lambda)$?

Solution: Reestimation Procedure

• initial state distribution :

$$\bar{\pi}_i = \text{expected frequency in } s_i \text{ at time 1}$$

• state transition probability distribution :

$$\bar{a}_{ij} = \frac{\text{expected } \# \text{ of transitions from } s_i \text{ to } s_j}{\text{expected } \# \text{ of transitions from } s_i}$$

ullet observation symbol probability distribution in s_j :

$$\overline{b}_{j}(k) = \frac{\text{expected frequency in } s_{j} \text{ and observing}}{\text{expected frequency in } s_{j}}$$

 ξ terms:

$$\xi(t,i,j) = P(s_i \otimes time \ t, \ s_j \otimes time \ t+1|\mathcal{O},\lambda)$$

$$= \frac{P(s_i \otimes time \ t, \ s_j \otimes time \ t+1,\mathcal{O}|\lambda)}{P(\mathcal{O}|\lambda)}$$

$$= \frac{\alpha(t,i)a_{ij}b_j(o_{t+1})\beta(t+1,j)}{P(\mathcal{O}|\lambda)}$$

Forward-Backward Illustration

 γ terms :

$$\gamma(t,i) = P(s_i \otimes time \ t | \mathcal{O}, \lambda)$$

$$= \frac{P(s_i \otimes time \ t, \mathcal{O} | \lambda)}{P(\mathcal{O} | \lambda)}$$

$$= \frac{\alpha(t,i)\beta(t,i)}{P(\mathcal{O} | \lambda)}$$

Relation between γ terms and ξ terms :

$$\gamma(t,i) = \sum_{j=1}^{N} \xi(t,i,j)$$

$$\sum_{t=1}^{T-1} \xi(t,i,j) = \text{expected } \# \text{ of transitions from } s_i \text{ to } s_j$$

$$\sum_{t=1}^{T-1} \gamma(t,i) = \text{expected } \# \text{ of transitions from } s_i$$

$$\sum_{t=1}^{I} \gamma(t,i) = \text{expected frequency in } s_j$$

Reestimation Equations:

• initial state distribution :

$$\bar{\pi}_i = \gamma(1, i), \qquad i = 1, 2, \cdots, N$$

• state transition probability distribution :

$$\bar{a}_{ij} = \frac{\sum_{t=1}^{T-1} \xi(t, i, j)}{\sum_{t=1}^{T-1} \gamma(t, i)}, \quad i, j = 1, 2, \dots, N$$

ullet observation symbol probability distribution in s_i :

$$\bar{b}_{j}(k) = \frac{\sum_{t=1}^{T} \{ \gamma(t, i) \text{ s.t. } o_{t} = vk \}}{\sum_{t=1}^{T} \gamma(t, i)}$$
$$j = 1, 2, \dots, N \qquad m = 1, 2, \dots, M$$

Note:

$$\sum_{i=1}^{N} \bar{\pi}_i = 1, \qquad \sum_{j=1}^{N} \bar{a}_{ij} = 1, \qquad \sum_{k=1}^{M} \bar{b}_j(k) = 1$$

γ terms for Continuous Observation Density :

$$\gamma(t, i, m) = P(s_i \text{@time } t, \text{mixture } m | \mathcal{O}, \lambda)$$

$$= \frac{\alpha(t, i)\beta(t, i)}{P(\mathcal{O}|\lambda)} \cdot \frac{c_{jm}\mathcal{N}(\mathbf{x}, \mathbf{m}_{jm}, \mathbf{\Sigma}_{jm})}{\sum_{n=1}^{M} c_{jn}\mathcal{N}(\mathbf{x}, \mathbf{m}_{jn}, \mathbf{\Sigma}_{jn})}$$

Reestimation Equations:

• mixture coefficient :

$$\bar{c}_{jm} = \frac{\sum_{t=1}^{T} \gamma(t, i, m)}{\sum_{t=1}^{T} \sum_{n=1}^{M} \gamma(t, i, n)}$$
$$j = 1, 2, \dots, N \qquad m = 1, 2, \dots, M$$

mean :

$$\bar{\mathbf{m}}_{jm} = \frac{\sum_{t=1}^{T} \gamma(t, i, m) \cdot o_t}{\sum_{t=1}^{T} \gamma(t, i, m)}$$

• covariance:

$$\bar{\mathbf{\Sigma}}_{jm} = \frac{\sum_{t=1}^{T} \gamma(t, i, m) \cdot (\mathbf{o}_t - \mathbf{m}_{jm})^T (\mathbf{o}_t - \mathbf{m}_{jm})}{\sum_{t=1}^{T} \gamma(t, i, m)}$$

Training Loop

Given:

• sequence of code symbol (discrete case):

$$\mathcal{O} = o_1, o_2, \cdots, o_T$$

sequence of feature vector (continuous case) :

$$\mathcal{O} = \mathbf{o}_1, \mathbf{o}_2, \cdots, \mathbf{o}_T$$

Want to Generate:

• word model λ (discrete or continuous) :

$$\lambda = \lambda(\pi, A, B)$$

Restimation: Revisited

- If $\lambda = (A, B, \pi)$ is the initial model, and $\bar{\lambda} = (\bar{A}, \bar{B}, \bar{\pi})$ is the re-estimated model. Then it can be proved that either:
 - 1. The initial model, λ , defines a critical point of the likelihood function, in which case $\bar{\lambda} = \lambda$, or
 - 2. Model $\bar{\lambda}$ is more likely than λ in the sense that $P(\mathbf{O}|\bar{\lambda}) > P(\mathbf{O}|\lambda)$, i.e., we have found a new model $\bar{\lambda}$ from which the observation sequence is more likely to have been produced.
- Thus we can improve the probability of $oldsymbol{O}$ being observed from the model if we iteratively use $\bar{\lambda}$ in place of λ and repeat the re-estimation until some limiting point is reached. The resulting model is called the maximum likelihood HMM.

How to find optimal state sequence

- One criterion chooses states, q_t , which are *individually* most likely
 - This maximizes the expected number of correct states
- Let us define $y_t(i)$ as the probability of being in state s_i at time t, given the observation sequence and the model, i.e.

$$\gamma_t(i) = P(q_t = s_i | \mathbf{O}, \lambda)$$

$$\sum_{i=1}^N \gamma_t(i) = 1, \quad \forall t$$

Then the individually most likely state, q_t, at time t is:

$$q_t = \underset{1 \le i \le N}{\operatorname{argmax}} \ \gamma_t(i) \qquad 1 \le t \le T$$

Note that it can be shown that:

$$\gamma_t(i) = \frac{\alpha_t(i)\beta_t(i)}{P(\mathbf{O}|\lambda)}$$

Problem (3) – Decoding Problem

Given the observation sequence \mathcal{O} and the model λ , how do we choose a state sequence \mathcal{Q} , which is optimal in some meaningful sense (that is, best "explains" the observations)?

Solution:

$$q_t = \underset{1 \le i \le N}{\operatorname{argmax}} \ \gamma(t, i), \qquad t = 1, 2, \cdots, T$$

Viterbi Algorithm:

 δ terms :

$$\delta_t(i) = \max_{q_1, \dots, q_{t-1}} P(q_1, \dots, q_t, o_1, \dots, o_t, s_i \text{@time } t | \lambda)$$

(best score along a single state path q_1, \dots, q_t which accounts for a observation sequence o_1, \dots, o_t and ends in state s_i)

Induction:

$$\delta_{t+1}(j) = \left[\max_{i} \delta_t(i) a_{ij}\right] b_j(o_{t+1})$$

Viterbi Algorithm:

Initialization:

$$\delta_1(i) = \pi_i b_i(o_1)$$

 $\psi_1(i) = 0, \qquad i = 1, 2, \dots, N$

Recursion:

$$\delta_t(j) = \max_{1 \le i \le N} \left[\delta_{t-1}(i) a_{ij} \right] b_j(o_{t+1})$$

$$\psi_t(j) = \underset{1 \le i \le N}{\operatorname{argmax}} \left[\delta_{t-1}(i) a_{ij} \right]$$

$$j = 1, 2, \dots, N \qquad t = 2, 3, \dots, T$$

Termination:

$$p^* = \max_{1 \le i \le N} \delta_T(i)$$
$$q_T^* = \operatorname*{argmax}_{1 < i < N} \delta_T(i)$$

Path (state sequence) backtracking:

$$q_t^* = \psi_{t+1}(q_{t+1}^*), \qquad t = T - 1, \dots, 2, 1$$

Word Set:

```
alphabet a,b, ... ,z
digit 0,1, ... ,9
misc. period, space, silence
```

Result:

```
utterance -> " 6 1 3 7 6 8 _ 3 4 4 6 7 6 "
recognized -> " 6 1 3 7 6 8 _ 3 4 4 6 7 6 "

utterance -> " 1 a c q u e r _ j a m a i c a "
recognized -> " 1 a c q u e i _ j a n a i d k "
```

Confusion Matrix:

Viterbi Algorithm: An Example

Viterbi Algorithm : Contd.

	0	а	аа	aab	aabb
s_1	1.0	s ₁ , a .4	s ₁ , a .16	s ₁ , b .016	s ₁ , b .0016
<i>s</i> ₂	s ₁ , 0 .2	s ₁ , 0 .08 s ₁ , a .21 s ₂ , a .04	s ₁ , 0 .032 s ₁ , a .084 s ₂ , a .042	s ₁ , 0 .0032 s ₁ , b .0144 s ₂ , b .0168	s ₁ , 0 .00032 s ₁ , b .00144 s ₂ , b .00336
S ₃	s ₂ , 0 .02	$s_2, 0$.021 s_2, a .03	$s_2, 0$.0084 s_2, a .0315	$s_2, 0$.00168 s_2, b .0294	s ₂ , 0 .000336 s ₂ , b .00588

Decoding using Forward-Backward Algorithm

	0	а	аа	aab	aabb
s_1	1.0	s ₁ , a .4	s ₁ , a .16	s ₁ , b .016	s ₁ , b .0016
S ₂	s ₁ , 0 .2	s ₁ , 0 .08 s ₁ , a .21 s ₂ , a .04	s ₁ , 0 .032 s ₁ , a .084 s ₂ , a .066	s ₁ , 0 .0032 s ₁ , b .0144 s ₂ , b .0364	s ₁ , 0 .00032 s ₁ , b .00144 s ₂ , b .0108
<i>S</i> ₃	s ₂ , 0 .02	$s_2, 0$.033 s_2, a .03	$s_2, 0$.0182 s_2, a .0495	s ₂ , 0 .0054 s ₂ , b .0637	s ₂ ,0 .001256 s ₂ ,b .0189

Word and Phone Based Models

- Small Voc : Word based models
- Large Vocabulary: Phone based models

SENTENCE (Sw): SHOW ALL ALERTS

WORDS:

ALL: O A

ALERTS: O F O F O F O F

SILENCE:

COMPOSITE FSN:

Continuous (Density) HMM

- A continuous density HMM replaces the discrete observation probabilities, $b_j(k)$, by a continuous PDF $b_j(\mathbf{x})$
- A common practice is to represent $b_j(\mathbf{x})$ as a mixture of Gaussians:

$$b_j(\mathbf{x}) = \sum_{k=1}^{M} c_{jk} N[\mathbf{x}, \mu_{jk}, \mathbf{\Sigma}_{jk}] \qquad 1 \le j \le N$$

where c_{jk} is the mixture weight

$$c_{jk} \ge 0$$
 $(1 \le j \le N, 1 \le k \le M, \text{ and } \sum_{k=1}^{M} c_{jk} = 1, 1 \le j \le N),$

N is the normal density, and

 μ_{jk} and Σ_{jk} are the mean vector and covariance matrix associated with state j and mixture k.

Semi Continuous HMMs

- Semi-continuous HMMs first compute a VQ codebook of size M
 - The VQ codebook is then modelled as a family of Gaussian PDFs
 - Each codeword is represented by a Gaussian PDF, and may be used together with others to model the acoustic vectors
 - From the CD-HMM viewpoint, this is equivalent to using the same set of M mixtures to model all the states
 - It is therefore often referred to as a Tied Mixture HMM
- All three methods have been used in many speech recognition tasks, with varying outcomes
- For large-vocabulary, continuous speech recognition with sufficient amount (i.e., tens of hours) of training data, CD-HMM systems currently yield the best performance, but with considerable increase in computation

ASR Initialization: Iteration Issues

Figure 4.10 Finding the right solution in iterative algorithms

ASR Initialization

Figure 4.11 Initialization in ASR

Hmm Phoneme Model

Figure 4.12 HMM graph

HMM Parameter Estimation

Initialization of Single Gaussian HMM

Increasing the Number of Gaussian pdfs in the HMM

Figure 4.15 Increasing the number of Gaussian pdfs in the mixtures

Cluster Splitting: Initial Step

Figure 4.8 Initial step of the cluster splitting algorithm

Cluster Splitting: Next Step

Figure 4.9 Second iterative step of the cluster splitting algorithm

Cluster Spitting Algorithm

Figure 4.16 Splitting algorithm

Acoustic Model Training in Practice

Figure 5.2 Acoustic trainer in RES

The Training Process: BW Reestimation

Figure 5.3 Training procedure

References

- Rabiner and Juang, Fundamentals of Speech Recognition, Prentice Hall
- Rabiner, A tutorial on HMM and selected applications in Speech Recognition
- J Glass, Speech Recognition, Spring 2003, Open Course Ware, MIT
- Speech Recognition, Course AM 0282
- Andrew Moore, Tutorial on HMM @ http://www.autonlab.org/tutorials/hmm.html
- C Bechetti, Speech Recognition: Theory and C++ Implementation
- Various Other sources