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Problem (2) — Learniing Problem

How do we adjust rnodel parameters A to max-
imize P(O|\)7?

Solution : Reestimation Procedure

e initial state distribution :
m; == expected frequency in s; at time 1

e state transition probability distribution :

expected # of transitions from s; to s;

G =
" expected # of transitions from s;

e observation symbol probability distribution in ;-

expected frequency in s; and observing

b:(k) = :
i(k) expected frequency in s;



¢ terms .
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Forward-Backward lllustration

5 & " @ L —
1 =
s
L] L]
L] L]
\.11‘-
~\
5 @ . . L —::‘,.
-
/
- .
L] L]
LY
,
"'\-\.H“\‘
5 » - = - = —P
] T
4
!
L] L]
.
L ]
LY
'“‘m\‘
SN @ L . » -
1 T




v terms :

v(t,i) = P(s;@time t|O,\)
P(s;@time ¢, O|\)

P(OIN)
a(t,1)B(t,1)
P(ON)

Relation between ~ terms and £ terms :

N

v(t,8) = Y &(t,4,5)

=1
T-1
Z £(t,4,7) = expected # of transitions from s; to s;
t=1
T-1
Z ~v(t,2) = expected # of transitions from s;
t=1
T

Z '7(t>’i) = expected frequency in S;
t=1



Reestimation Equations :

e initial state distribution :

%2:7(19%)7 i:l>27"'3N

e state transition probability distribution :

- t—l f(t’&]) .
a'ij: 7’7]‘“_’1727"'9N

t—-l "Y(t 'L)

e observation symbol probability distribution in s; :

ST {7(t,4) s.t. op = vk}

j:]-aza"'aN m:172""aM

bi(k) =




v terms for Continuous Observation Density :

v(t,i,m) = P(s;@time t, mixture m|O, \)
. a(t,i),@(t,i) ijN(X, mjmazjm)
—_— . M :

Reestimation Equations :

e Mmixture coefficient :

i m)

ij p— .
Y1 Sl (4, m)
g =1,2,---,N m=1,2,---, M
e Mmean
T .
—_ Zt:l ’Y(t,Z,TTL) * Ot
mjm =

Z;F:l 7(t> 7:7 m)
e Ccovariance :
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Training Loop

¢ initialized forward-
word model backward
: procedure

parameter
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symbol/

vector
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e sequence of code symbol (discrete case) :

O = 01,02, -+, 07

trained :
word model

e sequence of feature vector (continuous case) :

O = 041,03, --,07
Want to Generate :

e word model A\ (discrete or continuous) :

A=\, A,B)



Restimation : Revisited

e If A =(A B, 1) is the initial model, and A = (A, B, 17) is the
re-estimated model. Then it can be proved that either:

I. The initial model, A, defines a critical point of the likelihood
function, in which case A = A, or

2. Model A is more likely than A in the sense that P(O|A) > P(O|A),
i.e., we have found a new model A from which the observation
sequence is more likely to have been produced.

e Thus we can improve the probability of O being observed from
the model if we iteratively use A in place of A and repeat the
re-estimation until some limiting pointis reached. The resulting
model is called the maximum likelihood HMM.



How to find optimal state sequence

e One criterion chooses states, g;, which are individually most likely
— This maximizes the expected number of correct states

e Let us define y(i) as the probability of being in state s; at time t,
given the observation sequence and the model, i.e.

N
ye()=P(@: =silO,A) > yi)=1,  Vt
i=1

e Then the individually most likely state, g;, at time t is:

g =argmax y.(i) 1<t<T
1<i<N

e Note that it can be shown that:

¢ (1) (i)

i) = =55




Problem (3) — Decoding Problem

Given the observation sequence ©® and the
model A\, how do we choose a state sequence
@, which is optimal in some meaningful sense
(that is, best “explains” the observations)?

Solution :

q¢ = argmax 7(t7i)’ ¢
1<i<N

1,2,-..,T

Viterbi Algorithm :
b terms :

6t(2) — g max P(qlv"'aqt7 01, O0t, Si@time tl)‘>

1,,qt_1
(best score along a single state path g¢q,---,q: which
accounts for a observation sequence oq,---,0; and ends
in state s;)
Induction :

b41(7) = [mz.ax 5t<i)az’jJ bj(op41)



Viterbi Algorithm :
Initialization :

61(2) = mb;(01)

P1(1) = 0, i=1,2,---,N
Recursion :

6:(j) = max, [6:—1(i)a,;] bj(0p41)

¥i(5) = argmax [6;—1(2)a;,)
1<i<N

j=1,2,---,N t=2,3,---
Termination ;
%k

= maXx 67(1
p 1§z’§NT<>

qp = argmaxép(7)
1<i<N

Path (state sequence) backtracking :

q‘?:wt-—f—l(qzk-}-l)a t:T_1,7271



Word Set :

alphabet a,b, ... ,z

digit o,1, ... ,9

misc. period, space, silence
Result :

utterance -> " 6 1 376 8 _ 344676
recognized -> " 6 1 37 68 _ 344676
utterance -> "' 1 a c qu e _Jamai

recognized -> " 1l acqueil_ janai

Confusion Matrix :

A-set : Nasal/Glide :

a h j k 8 l m n 7 9
a 73 3 1 3 23 1 71 1t 1 .
h 0 91 . o1 m 564 12 1 1
J 1 . 81 4 n 126756 1 4
k 3 7 83 1 7 .. . 97 .
8 10 3 . 1 63 o . 1 . 87

! O

12 3 11 10 13 23 11 12 2 9



Viterbi Algorithm : An
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Viterbi Algorithm : Contd.

0 aa aab aabb
s 1.0 s;,a .4 s;,a .16 s, b 016 s;, b 0016
s;,0 .08 5,0 .032 51,0 .0032 51,0 .00032
s> | 51,0 .2 s;,a .21 s;.,a 084 s, b 0144 si, b 00144
s, a .04 sz,a 042 52, 0168 so, b .00336
s.,0 .021 | 5,0 .0084 | s5,,0 .00168 | s,,0 .000336
LY 52,0 .02
S§2,d .03 572, 0315 .F'_g.l[? .0294 ?73,1[1‘ 00588
a a b b
0.016 0.0016
5, >9 »
0.0168  0.00336
5y
0.0294 N\ 0.00588
53

-
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Decoding using Forward-Backward
Algorithm

0 a aab aabhb
51 1.0 s;,a .4 s1,a .16 s, b 016 s, b 0016
s, 0 .08 51,0 .032 s, 0 0032 | 51,0 .00032
s | 51,0 2 s;,a 21 s;,a .084 s, b 0144 | s1, b .00144
so,a .04 s;,a .066 S., b 0364 | 55, b 0108
s;,0 033 | 5., 0 0182 | s:,0 .0054 | s,,0 .001256
53 Sz,ﬂ .02
s;,a .03 so,a .0495 | s, b 0637 | 5., b 0189
0 b b
1.0 4 0.16 0.016 0.0016
51
01256
3,
020156
g
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Word and Phone Based Models

« Small Voc : Word based models
« Large Vocabulary : Phone based models

WORD MODEL

SUB-WORD UNIT
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Continuous (Density) HMM

e A continuous density HMM replaces the discrete observation
probabilities, bj(k), by a continuous PDF b;(X)

¢ A common practice is to represent b;(X) as a mixture of Gaussians:
M

bj(x) = > cikNIX, pjk, Zk]l 1 <j<N
k=1

where cjk is the mixture weight
M
cik=0 (1<j<N,1<k<M,and ) cjx=11<j<N),
k=1

N is the normal density, and
Hjk and Zji are the mean vector and covariance matrix

associated with state j and mixture k.



Semi Continuous HMMs

e Semi-continuous HMMs first compute a VQ codebook of size M
— The VQ codebook is then modelled as a family of Gaussian PDFs

— Each codeword is represented by a Gaussian PDF, and may be
used together with others to model the acoustic vectors

— From the CD-HMM viewpoint, this is equivalent to using the
same set of M mixtures to model all the states

— It is therefore often referred to as a Tied Mixture HMM

e All three methods have been used in many speech recognition
tasks, with varying outcomes

e For large-vocabulary, continuous speech recognition with
sufficient amount (i.e., tens of hours) of training data, CD-HMM

systems currently yield the best performance, but with
considerable increase in computation



ASR Initialization : lteration Issues
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Figure 4.10 Finding the right solution in iterative algorithms



ASR Initialization

Speech data =
features ’F

—p-to Recognition

Initialization
Phoneme labels P

Speech data =
features

HMM phoneme
param eters

Training

Phoneme labels

Figure 4.11 Initialization in ASR



Hmm Phoneme Model

Figure 4.12 HMM graph



HMM Parameter Estimation
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Initialization of Single Gaussian
HMM
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Increasing the Number of Gaussian
pdfs in the HMM

‘Compute_Cluster
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Figure 4.15 Increasing the number of Gaussian pdfs in the mixtures



Cluster Splitting : Initial Step
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Figure 4.8 Initial step of the cluster splitting algorithm



Cluster Splitting : Next Step
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Figure 4.9 Second iterative step of the cluster splitting algorithm



Cluster Spitting Algorithm

A
Pr{z/s;)

Higher distortion direction

f the old pdf
Clusters of the two new pdfs Mean of the old pdfs

Figure 4.16 Splitting algorithm



Acoustic Model Training In
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Figure 5.2 Acoustic trainer in RES
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The Training Process : BW Re-
estimation

5o )

no

Baum-W ¢elch param cter
re-estim ation
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[ End of training

Figure 5.3 Training procedure
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