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Comparison of Parametric Representations for 
Monosyllabic Word Recognition in 
Continuously  Spoken Sentences 

Akfract-Several  parametric  representations of the  acoustic signal  
were  compared  with regard to word  recognition  performance  in  a 
syllable-oriented  continuous  speech  recognition system. The  vocabu- 
lary  included  many  phonetically similar monosyllabic  words,  therefore 
the  emphasis was on  the  ability to retain  phonetically  significant 
acoustic  information  in the face of  syntactic and duration variations. 
For  each  parameter  set (based on a  mel-frequency  cepstrum,  a  linear 
frequency  cepstrum,  a  linear  prediction  cepstrum,  a  linear  prediction 
spectrum,  or  a  set of reflection  coefficients),  word  templates  were gen- 
erated using an efficient  dynamic  warping  method,  and  test  data  were 
time  registered  with  the  templates. A set of ten  mel-frequency cep- 
strum  coefficients  computed every 6.4 ms resulted in the best per- 
formance,  namely 96.5 percent  and 95.0  percent  recognition  with  each 
of two speakers. The  superior  performance of the  mel-frequency cep- 
strum  coefficients  may be attributed to the  fact  that  they  better  repre- 
sent  the  perceptually relevant aspects of the  short-term speech spectrum. 

T 
I. INTRODUCTION 

HE selection of the best  parametric  representation  of 
acoustic  data is an  important  task  in  the design  of any 

speech  recognition  system. The usual objectives in selecting a 
representation are to compress  the  speech  data  by  eliminating 
information not pertinent to the phonetic analysis  of the  data 
and to enhance  those  aspects  of the signal that  contribute sig- 
nificantly to  the  detection  of  phonetic differences. When a 
significant amount of  reference  information is stored,  such as 
different  speakers’  productions of the vocabulary,  compact 
storage of  the  information  becomes an important practical 
consideration. 

The  choice  of  a basic phonetic  segment  bears closely on  the 
representation  problem because the decision to  identify  an  un- 
known  segment  with  a  reference  category is  based on the pa- 
rameters  within the  entire  segment. The number of different 
reference  segments is  generally  smaller than  the number  of 
possible unknown  segments,  and  therefore the  step of identify- 
ing an unknown  with a reference entails a significant loss 
of  information. One can minimize the loss of  useful  informa- 
tion by  examining  different  parametric  representations in the 
framework of the specific recognition  system  under consider- 
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ation. However,  since the  choice of a  segment is so basic to 
the decision as to what  acoustic  information is useful, the re- 
sult of such  a  comparative  examination  of  different  representa- 
tions is directly applicable  only to the specific recognition 
system,  and  generalization to  differently organized systems 
may not be  warranted. 

Fujimura [l]  and  Mermelstein [ 2 ]  discussed in detail  the 
rationale for use  of  syllable-sized segments in  the  recognition 
of continuous  speech.  The goal of the experiments  reported 
here was to select an  acoustic  representation  most  appropriate 
for  the  recognition of such  segments.  The  methods used to  
evaluate the representations  were  open testing, where the 
training data and test data were independently derived, and 
closed testing, where  these data  sets  were identical. In  each 
case, the same speaker  produced both  the reference  and  test 
data, which  included  the same words in a variety of  different 
syntactic  contexts.  Although variation among  speakers is an 
important  problem in its  own right, attention is focused  here 
on speaker-dependent  representations to restrict the  different 
sources  of variation in  the acoustic  data. 

White and  Neely [3] showed that  the choice  of  parametric 
representations significantly affects the recognition results in 
an isolated word  recognition  system. Two of  the  best repre- 
sentations  they  explored  were  a 20 channel  bandpass filtering 
approach using a  Chebyshev  norm on the  logarithm  of  the 
filter energies  as a similarity measure,  and  a linear prediction 
coding  approach using a linear prediction residual [4] as a 
similarity measure.  From  the similarity of the  corresponding 
results, they  concluded that bandpass filtering and linear pre- 
diction were essentially equivalent  when used witli a dynamic 
programming  time  alignment  method.  However,  that result 
may  be  due to  the absence of phonetically similar words in 
the  test  vocabulary. 

Because of  the  known variation of the ear’s critical band- 
widths  with  frequency [5], [6]  , filters spaced linearly at low 
frequencies  and  logarithmically at high  frequencies  have  been 
used to capture  the  phonetically important characteristics of 
speech.  Pols [7] showed that  the first six eigenvectors  of  the 
covariance  matrix for  Dutch vowels of three  speakers, ex- 
pressed  in terms  of 17 such  filter energies, accounted  for  91.8 
percent  of  the total variance. The  direction  cosines  of his 
eigenvectors were  very  similar to a  cosine series expansion  on 
the filter energies. Additional  eigenvectors  showed  an increas- 
ing number of oscillations of their  direction  cosines  with re- 
spect to their original  energies. This result suggested that  a 
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compact  representation would be provided by a set of mel- 
frequency  cepstrum coefficients. These cepstrum coefficients 
are the result of a cosine transform of the real logarithm of the 
short-term energy spectrum expressed on a mel-frequency 
scale .’ 

A preliminary experiment  [9] showed that  the cepstrum 
coefficients were useful for representing consonantal  informa- 
tion as well. Four speakers produced 12 phonetically similar 
words, namely stick, sick, skit ,  spit ,  sit, slit, strip, scrip, skip, 
skid, spick, and slid. A representation using only two cepstrum 
coefficients resulted in 96 percent correct recognition of this 
vocabulary. Given these encouraging results, it became im- 
portant to verify the power of the mel-frequency cepstrum 
representation by comparing it to a number of other com- 
monly used representations in  a recognition framework where 
the  other variables, including vocabulary, are kept constant. 

This paper compares the performance of different acoustic 
representations in  a  continuous speech recognition system 
based on syllabic units. The next  section describes the organi- 
zation of the recognition system, the selection of the speech 
data, and  the different parametric representations. The fol- 
lowing section describes the  method  for generating the acous- 
tic  templates  for  each word by use of a dynamic-warping time- 
alignment procedure. Finally, the results obtained  with  the 
various representations are listed and discussed from the point 
of view of completeness in representing the necessary acoustic 
information. 

11. EXPERIMENTAL  FRAMEWORK 
A  rather simple speech recognition framework served  as the 

testbed to evaluate the various acoustic representations. 
Lexical information was utilized in the form of a list of pos- 
sible words and  their corresponding acoustic templates,  and 
these words were assumed to occur with equal likelihood. No 
syntactic or semantic information was utilized. If such infor- 
mation  had been present, it could have been used to restrict 
the number of admissible lexical hypotheses or  assign unequal 
probabilities to them.  Thus, in practice, instead of matching 
hypotheses to  the entire vocabulary, the number of lexical 
hypotheses that one evaluates may be reduced to a  much 
smaller number. This reduction would cause many of the 
hypotheses phonetically similar to  the ,target word to be elim- 
inated  from consideration. Thus the high phonetic confusabil- 
ity of the test  data may have resulted in  a  test environment 
that is more rigorous than would be  encountered  in practice. 

A. Selection of Corpus 
The performance of continuous speech recognition systems 

is determined by a  number of distinct sources of acoustic vari- 
ability, including speaker characteristics, speaking rate, syntax, 
communication environment,  and recording and/or trans- 
mission conditions. The focus of the current  experiments 

‘Fant [ 81 compares Beranek’s mel-frequency scale,  Koenig’s  scale, 
and Fant’s approximation  to  the mel-frequency scale.  Since the  differ- 
ences  between  these scales are not significant  here, the mel-frequency 
scale should be understood as a  linear  frequency spacing  below 1000 Hz 
and  a  logarithmic spacing above 1000 Hz. 

is acoustic recognition in  the face of variability induced in 
words of the same speaker by variation of the surrounding 
words and by syntactic position. The use  of a separate refer- 
ence template  for each different syntactic environment which 
a  word might occupy would require exorbitant  amounts of 
storage and training data.  Thus an  important practical re- 
quirement is to generate reference templates without re- 
gard to the syntactic position of the  word. To avoid the 
problem of automatically segmenting complex  consonantal 
clusters, the corpus was composed of monosyllabic target 
words that were semantically acceptable in  a number of dif- 
ferent positions in  a given syntactic context. Since acoustic 
variation due to different speakers is a  distinctly separate prob- 
lem [lo] , it was considered advisable to restrict the scope of 
these initial experiments by using only speaker-dependent 
templates. That is, both reference and  test data were pro- 
duced by the same speaker. 

The sentences were read clearly in  a  quiet environment and 
recorded using a high-quality microphone. These recording 
conditions were selected to establish the best performance 
level that one could  expect the recognition system to attain. 
Environments with higher ambient noise, which may be en- 
countered in a practical speech input situation, would un- 
doubtedly detract from the clarity of the acoustic information 
and  therefore result in lower performance. 

The speech data comprised 52 different CVC words from 
two male speakers (DZ and LL), and  a total of 169 tokens 
were collected from 57 distinct sentences (Appendix A). The 
sentences were read twice by each speaker in recording ses- 
sions separafed in time by  two  months (denoted by DZI,D22, 
LLl , and LL2). Thus the  data consisted of a total of 676 syl- 
lables. To achieve the required variability, the selected words 
could be used as both nouns  and verbs. For example, “Keep 
the hope at  the bar” and “Bar the keep for the yell” are two 
sentences that allow syntactic variation but preserve the same 
overall intonation pattern. All the words examined carried 
some stress; the unstressed function words were not analyzed. 
The target words, all CVC’s, included 12 distinct vowels, /i,  I, 
e, E, z, 2 ,  A ,  U, u, 3, a, o/, some of which are normally diph- 
thongized in English. Each vowel  was represented in at least 
four  different  words, and these words manifested differences 
in both  the prevocalic and postvocalic consonants. The con- 
sonants were comprised of simple consonants as well as 
affricates, but  no consonantal clusters. 

B.  Segmentation 
An automatic segmentation process [l I ]  was initially con- 

sidered as one way  of delimiting syllable-sized units in con- 
tinuously spoken text,  but any such algorithm performs the 
segmentation task with  a  finite  probability of error. In par- 
ticular, weak unstressed function words sometimes appear 
appended to  the adjacent words carrying stronger stress. 
Additionally,  in  this study, a  boundary point located for an 
intervocalic consonant  with high sonority may not consis- 
tently  join that consonant to the word of interest. In order to 
avoid possible interaction  between- segmentation errors and 
poor parametric representations, manual segmentation and 
auditory evaluation was used to accurately delimit the signal 
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Fig. 1. Filters for  generating  mel-frequency  cepstrum  coefficients. 

corresponding to the target words.  The  segmentation, as  well 
as the  subsequent analysis and  recognition, was performed on 
a  PDP-11/45  minicomputer  with the Interactive Laboratory 
System [ 121 . 

In  systems  employing  automatic  segmentation,  the  actual 
recognition rates can be  expected to be  lower  due to the gen- 
eration  of  templates  from  imperfectly  delimited  words  [13] . 
However, there is no reason to believe that segmentation 
errors would not  detract equally  from the recognition rates 
obtained  for  the  various  parametric representations. 

C. Parametric Representations 
The  parametric  representations  evaluated in this study  may 

be  divided into  two groups:  those  based on  the  Fourier spec- 
trum  and  those  based  on  the linear prediction  spectrum.  The 
first group  comprises the mel-frequency  cepstrum coefficients 
(MFCC) and  the linear frequency  cepstrum coefficients 
(LFCC). The  second  group  includes the linear prediction 
coefficients (LPC), the reflection coefficients (RC), and  the 
cepstrum coefficients derived from the linear prediction coef- 
ficients (LPCC). A Euclidean  distance  metric was  used for all 
cepstrum  parameters since cepstrum coefficients are  derived 
from an orthogonal basis. This  metric was also used for  the 
RC, in view of  the  lack  of  an  inherent  associated  distance 
metric.  The LPC were evaluated using the minimum predic- 
tion residual distance  metric [4]. 

Each  acoustic signal  was  low-pass filtered at 5 kHz and sam- 
pled at  10 kHz.  Fourier  spectra  or linear prediction  spectra 
were computed  for  sequential  frames 64 points (6.4  ms) or 
128  points  (12.8 ms) apart.  In  each case, a  256  point Ham- 
ming window was  used to select the  data  points to be 
analyzed. (A window size  of 128 points  produced  degraded 
results.) 

For  the MFCC computations,  20 triangular bandpass filters 
were simulated as shown in  Fig. 1. The MFCC were  com- 
puted as 

where M is the  number  of  cepstrum coefficients, and x,, k = 
1 ,2 ,  * * ,20, represents  the  log-energy output of  the kth filter. 

The LFCC were  computed  from  the  log-magnitude discrete 
Fourier  transform  (DFT) directly as 

where K is the  number of  DFT magnitude coefficients Yk. 
The LPC were obtained  from  a 10th order all-pole approxi- 

mation to  the spectrum  of the windowed  waveform.’  The 
autocorrelation  method  for  evaluation  of  the linear prediction 
coefficients was  used [14]. The RC were  obtained  by  a trans- 
formation  of  the LPC which is equivalent to matching the in- 
verse of  the LPC spectrum  with  a transfer function  spectrum 
that corresponds to an  acoustic tube consisting  of ten sections 
of variable cross-sectional area [ 151.  The reflection coeffi- 
cients determine  the  fraction  of  energy in  a traveling wave that 
is reflected at each  section  boundary. 

The LPCC were obtained  from  the LPC directly as [ 141 

k = l  ‘ 
(3) 

The  Itakura  metric  represents  the  distance  between  two 
spectral frames  with  optimal  (reference) LPC and  test LPC as 

A 

(4) 

where  is the  autocorrelation  matrix  (obtained  from  the  test 
sample)  corresponding to @. The  metric  measures  the 
residual error when  the  test  sample is filtered by  the  optimal 
LPC.  Because of  its  asymmetry,  the  Itakura  metric  requires 
specific identification of  the  reference coefficients (LPC) and 
the  test coefficients (a). For  computational efficiency, the 
denominator  of (4) will be unity if is expressed in unnormal- 
ized  form.  Then if ?(n) denotes  the  unnormalized  diagonal 
elements  of R ,  rLp(n) denotes  the  unnormalized  autocorrela- 
tion coefficients from  the LPC polynomial,  and  the  logarithm 
is eliminated, the distance  may  be  expressed as [16] 

10 
D [< rLP] = ?(O) rLp(0) + 2 ?(i) rLp(z>. 

111. GENERATION OF ACOUSTIC TEMPLATES 
The use of  templates to represent  the  acoustic  information 

in reference  tokens allows a significant computation  reduction 
compared to use of the reference  tokens themselves. The de- 
sign of  a  template  generation  process is  governed by  the goal 
of  finding  the  point in acoustic  space that simultaneously  min- 
imizes the  “distance” to all  given reference  items. Where the 
appropriate  distance is a linear function  of  the  acoustic vari- 
ables, this goal can  be realized by  the use of classic pattern 
recognition  techniques. However, phonetic features are not 
uniformly  distributed  across  the  acoustic  data,  and  therefore 
perceptually  motivated  distance  measures  are  nonlinear  func- 
tions of those  data.  To avoid the  computationally  exorbitant 
procedure  of  simultaneously  minimizing  the set of  nonlinear 
distances, templates are incrementally  generated by  introduc- 
ing additional  acoustic  information  from  each  reference token 
to the partial template  formed  from  the previous  used refer- 
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Fig. 2. Iterative  algorithm for template  generation. 

ence  tokens. Given a distance between two tokens, or between 
a token  and a  template,  the new template can be located along 
the line whose extent measures that distance. Since only 
acoustically similar tokens are to be combined into individual 
templates,  one may expect that this  procedure will exploit 
whatever local linearization the space permits. 

A. Template Generation Algorithms 
In one algorithm [lo] , an initial template is chosen as the 

token whose duration is the closest to  the average duration of 
all tokens representing the same word (Fig. 2).  Then all re- 
maining tokens are warped to  the initial template. The warp- 
ing  is achieved by first using dynamic programming to provide 
a mapping (or time registration) between any  token and 
the reference template. Following the  notation in [17] , let 
Ti(m), 0 < m <Mi, be a token  contour for word replication i 
with  duration Mi, i = 1, 2 ,  * * . , I, and let R 1  (m)  = Ti(m) be 
the initial reference contour, where the duration of the j th  
token is closest to the average duration.  For example, these 
contours  may be vectors of cepstrum coefficients obtained at 
10 ms intervals during the word. Then dynamic programming 
may be used to find mappings mi = wi(n),  i = 1, 2 ,  . * * , I, 
subject to boundary  conditions  at the endpoints, such that  the 
total distance DT(i)  between token i and the reference con- 
tour is minimal. A distance function D is defined for each 
pair of points (m,  n). Then 

N 
DT (i)  = min D [R (n), Ti (wi (n))] . 

{ w i ( a ) )  n = 1 

With the aid of these mappings, a new reference contour may 
be defined as 

and  the process is repeated until the distance between the cur- 
rent and previous templates is below some threshold. This 
procedure is not dependent on  the order in which tokens are 
considered. However, it is computationally expensive to iter- 

ate to  the final reference contour.  Furthermore, there  may be 
cases where there is no convergence [lo] . 

A different algorithm can be used for phonetically similar 
words; this algorithm requires less computation effort  and has 
no convergence problems. Furthermore, the algorithm allows 
a reference template to be  easily updated  with an accepted 
token during verification to allow for word variation over 
time. In this  procedure [ 1 8 ] ,  each successive token is warped 
with the current  template to produce  a new template for the 
next  token (Fig. 3). For example, 

R (n) = T1 (n), 

Rz (n)  = + [R l (n )  + T2(wz(n) ) ] ,  

R,(n) = ; [2Rz(n) + T3(W3 (n>)l ,  

1 
R&) = p -  1 F Z - 1  (n) + TI(wI(n))l. 

Thus,  the process ends with  the  Ith template. 
While this algorithm has  computational advantages over 

the first algorithm, the results become order dependent since 
the warping is sequential and  nonlinear. If the  tokens are used 
in  a different order,  a different template will result. For 
tokens  obtained  from the same speaker and spoken within the 
same context, order dependence is not a problem. However, 
for  tokens  obtained from different  syntactic positions, order 
dependence is potentially  a problem. Finally, if different 
speakers are involved, tokens will be less similar, and  the order 
in which they are taken may greatly affect  the final template. 
If clustering algorithms are  used to generate multiple templates 
for each word [lo] , then each cluster may be  viewed  as a 
group in which order dependence may be a consideration. 

B. Time Alignment 
All but one of the parametric distance measures explored are 

derived from Euclidean functions of parameters pertaining to 
pairs of time frames. The appropriate  time frames are chosen 
to best align the significant acoustic events in time. Because 
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Fig. 4. Dynamic  time  alignment of speech samples. 

the  segments aligned are monosyllabic  words,  one  can  take 
advantage of a  number of well-defined  acoustic features to 
guide the  alignment  procedure.  For  example,  the release of 
a prevocalic  voiced stop  or  the onset  of frication of a post- 
vocalic fricative manifest themselves by means  of  such  acoustic 
features. The particular alignment  procedure used meets  these 
requirements  without  requiring explicit decisions concerning 
the  nature  of  the  acoustic events. 

The  alignment  operation  employed a modified  form  of the 
dynamic  programming  algorithm first applied to spoken  words 
by  Velichko  and  Zagoruyko [19] and  subsequently  modified 
by Bridle and Brown E201 and  Itakura [4]. In view of  the in- 
tent  to use the same algorithm  for  template  generation as for 
recognition  of  unknown  tokens,  a  symmetric  dynamic  pro- 
gramming algorithm was utilized. Sakoe  and  Chiba [2] have 
recently  shown that  a symmetric  dynamic  programming algo- 
rithm yields better word  recognition results than previously 
used asymmetric  forms. 

Execution  of  the  algorithm  proceeded  in  two stages  (Fig. 4). 
First,  the pair of tokens to be  compared was time  aligned by 

appending silence to  the marked  endpoints  and linearly shift- 
ing the  shorter  of  the pair, with  respect to the longer, to 
achieve a  preliminary  distance  minimum.  Since  monosyllabic 
words generally  possess a  prominent syllabic peak in energy, 
this operation  ensured  that  the syllabic peaks  were lined up 
before  the  nonlinear  minimization  process was started.  In- 
formal  evaluation  has  shown that use of the preliminary 
alignment  procedure yields better results than  omitting  the 
procedure  or using a linear time  warping  procedure to equalize 
the  time  durations  of the tokens.  The  two  tokens,  extended 
by silence where  necessary,  were then subjected to  the  dy- 
namic  programming  search to find an improved  distance  mini- 
mum.  The  preliminary  distance  minimum,  found as a result of 
the initial linear time  alignment  procedure,  corresponded to 
the  distance  computed  along the diagonal  of the search space 
and  represented in most cases a good  starting  point  for  the 
subsequent  detailed search. Use of this preliminary  time align- 
ment and  the  additional  invocation of a  penalty  function 
when  the  point selected along the dynamic  programming path 
implied  unequal  time  increments along the measured  data, gen- 



362 IEEE TRANSACTIONS ON ACOUSTICS, SPEECH, AND  SIGNAL PROCESSING, VOL. ASSP-28,  NO. 4,  AUGUST 1980 

erally forced the optimum warping path  to be near the diag- 
onal, unless prominent acoustic information was present to 
indicate the contrary. For efficiency in programming, zeros 
(representing silence) were  never really appended to the  data, 
rather, the time  shift was retained  and used to trigger a modi- 
fied Euclidean or Itakura distance measure when appropriate. 

The use of silence to  extend  the syllable tokens in the pre- 
liminary time alignment, instead of linear time expansion or 
contraction as implied by asymmetric formulations of  the  dy- 
namic programming algorithm, requires some justification. 
The comparison here is among syllable-sized units which gen- 
erally possess an energy peak near the center regions and lesser 
energy near the ends. Based on  a  perceptual  model,  extension 
of the tokens by silence is clearly appropriate. Linear time 
scale changes would obscure equally the more significant dura- 
tion information  in the consonantal regions and less significant 
duration  information  in the vocalic regions. Discrimination 
between words like “pool”  and “fool” depends critically on 
the duration of the prevocalic burst or fricative. The align- 
ment ensures that  the prominent vowel regions are lined up 
before time scale  changes  in the consonantal regions are 
examined. 

C Dynamic Warping Algorithm 
The dynamic warping algorithm serves to estimate the simi- 

larity between an unknown token and  a reference template. 
Additionally, it serves to align a reference token  with  a partial 
template to ensure that phonetically similar spectral frames 
are  averaged  in generating a composite template.  Through  the 
preliminary alignment procedure discussed above, the token or 
template, whichever is shortest, is extended by silence frames on 
both sides. The resulting multidimensional acoustic representa- 
tions of the pair of patterns compared can be denoted by A (m), 
m = l , 2 ; . - , M a n d B ( n ) , n = l , 2 ; . . , M .  Foreachpairof 
frames {A(m),  B(n)}, a local distance function,D[A, B ]  can 
be defined for es-timating the similarity at point x’(m,  n). A 
change of variables identifies x’(m, n) as x ( p ,  4) ,  where p and 
4 are measured along and normal to  the diagonal illustrated in 
Fig. 4. For each position along the diagonal {x@, 0), 1 < 
p < M } ,  points along the normal {x@, 4) ,  141 d Q ( p ) }  are 
analyzed where the search space is limited by I4 I < &(p).  
The Q ( p )  define a region in the grid area delimited by lines 
with slopes 3 and 2 passing through the corners x(0, 0) and 

In order for a grid point x ( p ,  4)  to be an acceptable continu- 
ation of a path through some previous point x ( p  - 1, 4’), it 
must satisfy two  continuity conditions: 

1) 14 - 4’1 < 1-this condition restricts the  path to follow 
nonnegative time steps along the time  coordinates  of the 
patterns;  and 

2) 14 - 4”) < 1, where x ( p  - 2, 4’‘) is the selected predeces- 
sor of the  point x ( p  7 1, 4‘)-this condition restricts any  one 
time frame to participation  in at most two local comparisons. 

With the aid of these constraints, each point in the search is 
restricted to  at most  three possible predecessors. To establish 
the minimal distance subpath DT(p,  q)  leading back to the 
origin from the point x (p ,  4), the cumulative distance leading 
to  that point  through  each possible predecessor x ( p  - 1,4’) is 

x(M,  0). 

minimized. Thus 

DT(P, 4)  = mi? D T ( P  - 1 , 4 ?  + D [A ( P  - 41, 
4 

B(P + 411 V(4 - 4’)). (9) 

V is a  penalty  function  introduced to keep the alignment path 
close to  the diagonal unless a significant distance reduction is 
obtained by following a different path. By setting V to 1.5 for 
14 - 4‘1 = 1 and 1.0 otherwise,  unproductive searches far from 
the diagonal are avoided. Since all paths  terminate at x(M, 0), 
the  total distance of the minimum distance path and  therefore 
the distance between A and B is  given by DT(M, 0). 

The minimal distance subpath passes through  the  points 
{x@, G),  1 < p G M } .  These points allow the  identification 
of pairs of frames A ( p  - G) and B ( p  t 8) that  contributed to 
the minimal distance result. A new template C(p),  p = 1, 2 ,  
* - , M ,  can then be generated by appropriately averaging the 
framesA(p- a > a n d B ( p + q ^ ) , p = 1 , 2 ; . . , M .  

The one  exception to template generation by weighted aver- 
aging occurs with the LPC.  If two LPC vectors are averaged, 
stability of the  resultant vector is not guaranteed. Therefore, 
LPC templates were generated in the space of LP-derived re- 
flection coefficients. Since the reflection coefficients are 
bounded  in magnitude by  one, stability requirements are satis- 
fied and the symmetric dynamic warping algorithm could be 
used without modification.  Alternately,  the templates could 
be  derived in the space of LP-derived autocorrelation coeffi- 
cients since stability is guaranteed from the result that a stable 
autocorrelation matrix is positive-definite and a linear com- 
bination of positive-definite matrices is positive-definite and 
hence stable. 

D. Effects of Order In Generating a  Template 
As discussed above, the incremental addition of individual 

tokens to a previously formed  template results in a final 
template whose values depend on  the order of the tokens. 

In a preliminary experiment utilizing the same database 
[18] , ten sets of reference templates based on six MFCC were 
generated. Each set of templates used the reference tokens in 
random order.  Independent  test  data were then  matched  with 
each set of templates on a per speaker basis. The average 
recognition scores and standard deviations were 94.76 * 0.53 
percent and 90.53 * 0.48 percent for each speaker, respec- 
tively. Thus, random ordering of tokens for  template genera- 
tion did not change the results. At a 0.01 significance level, 
none of the rates  for  either speaker was significantly different 
from the respective mean.  Thirty-two of the 52 different CVC 
word types were never misidentified. Errors were generally 
confined to the same test tokens  of a word regardless of the 
template, and the most confusions were among test-reference 
pairs such as wake-bait, book-hood, and bum-herd. 

The consistent rates among template sets indicated that  the 
templates for any given word were relatively similar. To visu- 
alize such relationships, all of the pairwise distances for eight 
templates  and four test tokens of keep were measured and 
fitted to an X-Y plane. The eight templates were arbitrarily 
chosen from among the 24 possible templates  for four refer- 
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I I I I I I 

X 

Fig. 5. X-Y coordinate  plane for keep. 
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Fig. 6 .  Selection of monosyllabic  words for template  generation. 

ence  tokens  from  DZ1,  and  the  four  test  tokens were obtained 
from 0 2 2 .  The  fitting  procedure was  based on iterating (x, y )  
coordinates  for  each  point  (template  or  token)  until the 
mean-square  error in distances  among  the  points was  mini- 
mized.  The  coordinate  plane is shown in Fig. 5. Regardless of 
ordering, the  templates  are close to each  other  and relatively 
far from the  test  tokens,  thus illustrating the  robustness  of the 
technique  for  template  generation. 

IV. RECOGNITION 
For  each  parametric  representation (MFCC,  LFCC,  LPCC, 

LPC, and RC), the following test procedure was  used [22]. 
Each  segmented token from sets DZ1, 0 2 2 ,  LLI, and LL2 
was analyzed  and  a  matrix  of coefficients (columns corre- 
sponding to coefficient number  and rows corresponding to 
time  frame) was stored (Fig. 6). Each set was  used in turn as 
test  and  reference data. In  the case  of reference data, tem- 
plates were formed on a per  speaker-per session  basis,  using  all 
tokens  of  each  word (generally three to five in number) re- 
corded in the session. Two  types  of testing were  used: closed 
tests, where  test  and  reference  data were from  the same  ses- 
sion, e.g., reference DZ1 versus test  DZ1,  and  open  tests, 
where test and  reference  data were from  different sessions, 
e.g., reference  DZ1 versus test 022 (Fig. 7). For  each  test 
word,  a  warping was performed  with  each  of the 52 reference 
templates,  and  the  word was identified with  the least distant 
template  (maximum similarity). In  a practical situation, al- 
ternative methods,  such as  vowel preselection  and  thresholding 
for early rejection, could be applied to reduce  the  computa- 
tions  and  the  number  of  comparisons.  In  this  experiment, 
however,  the emphasis  was on  methodology rather than 
efficiency. 

SESSION I SESSION I 

SPEAKER L L  SPEAKER L L  
SESSION I SESSION I t 

IDENTIFY 
I I 

SESSION 2 
SPEAKER L L  
SESSION 2 

TEST DATA TEMPLATES  RESULTS 

Fig. 7. Two-way speaker-dependent  identification  tests. 

6 7 0 1  
SPEAKER DZ 

0 i 

I I  I I I I I  
MFCC LFCC  LPCC  LPC RC 

PARAMETER 

Fig. 8. Performance of parametric  representations  for  recognition. 

The results are listed in Table I'and displayed in Fig. 8 for 
open  tests  with  10 coefficients and 6.4 ms frames. Regardless 
of  the  frame  separation,  type  of testing or  speaker,  these  data 
indicate superior  performance  of  the MFCC when  compared 
with  the  other  parametric  representations.  In  fact,  the per- 
formance  of six MFCC was  also better  than any  other  ten coef- 
ficient set. In all  cases, the 6.4 ms  frame  separation  produced 
better  performance. As previously stated,  the window size  was 
25.6 ms,  and using  half the  window size produced  degraded 
results. Finally, speaker DZ,  a male with  exceptionally  low 
fundamental  frequency, was better recognized than  speaker 
LL, a  male  with  somewhat  higher  fundamental  frequency. 
Speaker-dependent differences, however,  require  further sys- 
tematic investigation. 

Most confusions  arose  between pairs of  words that were 
phonetically very  similar. For  example,  of the eight misrecog- 
nitions using the MFCC parameters  for  speaker DZ, two were 
between bar and mar, two were between pool and fool, one 
each  between keep and heat, bait and wake,  hook and rig, and 
hood and cause. Note that  by  not using the average spectrum 
energy  (the  zeroth  cepstrum coefficient) in these  comparisons, 
the overall energy  between time-aligned spectral frames  has 
been  equalized.  Inclusion  of the variation of overall energy 
with  time  might  possibly assist discrimination  between  such 
highly confusable  word pairs. 

V. CONCLUSIONS 

The similarity in rank  order  of the recognition rates by rep- 
resentation  for  each  of the  two  speakers suggests that  the 
performance  differences  among the various  acoustic repre- 
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TABLE I 
RECOGNITION  RATES  RESULTING FROM USE OF VARIOUS  ACOCSTIC  REPRESENTATIONS 

Acoustic  Representation  Number  of Distance  Frame  Speaker  Open  Closed 
Test % Test % Coefficients  Metric  Separation (ms) 

mel-frequency  cepstrum 

mel-frequency  cepstrum 

linear-frequency  cepstrum 

linear-prcdiction 

linear-prediction 

cepstrum 

spectrum 

reflection  coefficients 

10 Euclidean 6.4 

1 2 . 8  

6 Euclidean 6 .4  

1 2 . 8  

10 Euclidean 6 .4  

12.8 

10 Euclidean 6 .4  

1 2 . 8  

10 Itakura 6.4 

10 Euclidean 6.4 

DZ 
LL 

DZ 
LL 

DZ 
LL 

DZ 
LL 

DZ 
LL 

DZ 
LL 

DZ 
LL 

DZ 
LL 

DZ 
LL 

DZ _ _  

sentations are significant. These differences lead to the follow- 
ing specific conclusions. 

1) Parameters derived from the short-term  Fourier  spectrum 
(MFCC and LFCC) of the acoustic signal  preserve information 
that parameters from the LPC spectrum (LPCC,  LPC, and RC) 
omit. Both spectral representations are considered adequate 
for vowels. However, it is the confusions between the con- 
sonants that are most frequent. The differences found may be 
due to the  inaccurate representation of the consonantal 
spectra by the linear prediction technique. 

2) The mel-frequency cepstra possess a significant advantage 
over the linear frequency cepstra. Specifically, MFCC allow 
better suppression of insignificant spectral variation in the 
higher frequency bands. 

3) The cepstrum parameters (MFCC,  LFCC, and LPCC), 
which correspond to various frequency smoothed representa- 
tions of the log-magnitude spectrum, succeed better  than  the 
LPC and RC in capturing  the significant acoustic information. 
A Euclidean distance metric defined on  the cepstrum param- 
eters  apparently allows a better separation of phonetically 
distinct spectra. Since there is a unique  transformation  be- 
tween a set of LPCC and the corresponding LPG and RC, these 
representations can be said to contain equivalent information. 
However, this  transformation is nonlinear. Representing the 
acoustic information in the hyperspace of cepstrum param- 
eters favors the use of a particularly simple distance metric. 

4) Defining the metric on the basis of the Itakura distance 
is  less effective than defining it on the basis of cepstrum 
distance. The point of optimality is the same, i.e., equality be- 
tween cepstra implies zero difference in prediction residual 

LL 

1 2 . 8  DZ 
LL 

9 6 . 5  
9 5 . 0   9 9 . 1  

9 9 . 4  

9 5 . 6   9 9 . 4  
9 3 . 8   9 7 . 9  

9 6 . 5  
9 2 . 0  

9 9 . 4  
9 7 . 6  

9 5 . 0  
9 0 . 2  

9 8 . 8  
9 7 . 6  

9 4 . 7   9 9 . 1  
8 7 . 6   9 8 . 2  

9 3 . 2   9 8 . 8  
8 4 . 9   9 7 . 3  

9 2 . 6   9 9 . 1  
8 7 . 3   9 8 . 2  

9 1 . 7   9 8 . 2  
8 6 . 4   9 6 . 7  

8 5 . 2   9 7 . 9  
8 4 . 3  9 5 . 2  

8 3 . 1  
7 7 . 5   9 7 . 0  

9 7 . 1  

8 0 . 5   9 7 . 6  
7 4 . 6   9 6 . 2  

energy. However, the Itakura distance is  less successful in in- 
dicating the phonetic significance of the difference between a 
pair of spectra than  the cepstrum distance. 

5) The mel-frequency cepstrum coefficients form a partic- 
ularly compact  representation. Six coefficients succeed in 
capturing most of the relevant information. The importance 
of the higher cepstrum coefficients appears to depend on the 
speaker. Further data are required from additional speakers 
before firm conclusions can be reached on the optimal number 
of coefficients. 

The results are limited by the restrictions on the speech data 
examined. In particular, consonant clusters, multisyllabic 
words, and unstressed monosyllabic words have not been 
studied. Expansion of the database along any  one of these 
directions  introduces  additional representation problems. It 
is not obvious that  the best representation for stressed words 
is also best for the much more elastic unstressed words. These 
questions are left  for future studies. 

It should be emphasized that  the comparative ranking of the 
representations can be influenced by  the choice of both the 
local and the integrated distance metrics. A Euclidean dis- 
tance  function is one of the simplest to implement. However, 
taking into account the probability  distributions of the indi- 
vidual parameters should result in improved performance. Es- 
timating these distributions requires considerable data. Yet, 
even  if only a few parameters of these distributions are known, 
for example, the variance of the cepstrum coefficients, better 
local distance metrics could be  designed. Despite the high 
recognition rates achieved so far, there is reason to believe 
that even better performance can be attained in the  future. 



DAVIS AND MERMELSTEIN: MONOSYLLABIC WORD RECOGNITION 365 

The design  of the mel-frequency  cepstrum  representation 
was motivated  by  perceptual factors. Evidently,  an ability to 
capture  the  perceptually relevant information is  an important 
advantage.  The design  of  an improved  distance  metric  may 
result from  more  accurate  modeling of perceptual  behavior. 
In particular, where  a  constant  difference  between  spectra 
persists for  a  number  of  consecutive  time  frames, the  contri- 
bution of that difference in the  current  distance  computation 
is proportional to  the  duration of that difference. With the 
possible exception  of very short  durations,  no  perceptual  justi- 
fication exists for this property  [SI. Nevertheless, the  distance 
function  must in some  fashion  combine different information 
from all the  time  frames  constituting the signals compared. 
Further  optimization  of the integrated  distance  function repre- 
sents an  important challenge. 

For  each  representation,  a  small but significant gain in recog- 
nition is  achieved by  decreasing  the  frame spacing from 
12.8 ms to 6.4 ms.  The average difference in the recogni- 
tion rates is 1.7 percent. However, the  computational  com- 
plexity  for  any  dynamic  programming  comparison varies  as 
the  square  of  the average number  of  frames  constituting  a 
word.  Thus  a significant computational  penalty  accompanies 
any increase in the frame rate. In  contrast,  the  computations 
grow only linearly with the number  of  cepstrum coefficients. 
Since the  recognition rates for six cepstrum coefficients and 
6.4 ms frame spacing  is quite  comparable to  the rate for  ten 
coefficients and  12.8 ms frame spacing, increasing  the  number 
of coefficients and  maintaining  a  somewhat  coarser  time 
resolution is computationally  more  advantageous  than using 
fewer coefficients more  frequently. 

The principal conclusion  of  the  study is that perceptually- 
based word  templates are effective in capturing the acoustic 
information  required to recognize these  words in continuous 
speech. Due to the various limitations of this study, a con- 
clusion that such high recognition rates are attainable with  a 
complete  automatic  system  operating in a practical environ- 
ment is not warranted at  this  time. However, the results do 
encourage  a  continuing  effort to optimize  the  performance 
of  speech  recognition  systems  by critical evaluation  of  each 
of  the  constituent  components. 

APPENDIX A 

SENTENCES USED FOR WORD RECOGNITION 
1. Keep the hope at  the bar. 
2. Dig this rock in the heat. 
3. Wake the herd at  the head. 
4. Check the lock on  the seal. 
5. Bang this bar on  the head. 
6. Call a mess in the case. 
7. Cut the coat for  a mop. 
8. Foot the work in the mess. 
9. Boot the back of  the book. 

10. Burn your check in the jar. 
11. Mop the room on  the watch. 
12. Load the tar for  the bait. 
13. Tar this rig in a rush. 

14. 
15. 
16. 
17. 
18. 
19. 
20. 
21. 
22. 
23. 
24. 
25. 
26. 
27. 
28. 
29. 
30. 
31. 
32. 
33. 
34. 
35. 
36. 
37. 
38. 
39. 
40. 
41. 
42. 
43. 
44. 
45. 
46. 
47. 
48. 
49. 
50. 
51. 
52. 
53. 
54. 
55. 
56. 
57. 

Fear a hood on  the ship. 
Rig a bait for the work. 
Nail that book to the rock. 
Yell this call for  the wake. 
Gang the bait on  the coat. 
Walk the watch in the hope. 
Buff one book for  the walk. 
Hook the mop on  the lock. 
Pool the case for  the man. 
Hurl his bar in the muck. 
Bomb the head at  the wake. 
Pose this seal for  the gang. 
Mar the watch on  the hood. 
Heat the foot of  the fool. 
Kill the herd for  the load. 
Case your ship for  the cause. 
Head the rush for  the burn. 
Back the pool for  the check. 
Watch that hook with  the nail. 
Rush the buff at  the foot. 
Hood the load for  the keep. 
Room one seal in the pool. 
Herd the fool with  a yell. 
Rock the mop with  a hurl. 
Coat the cut with  the tar. 
Jar the bomb with  a bang. 
Seal the dig in a fear. 
Ship the nail in a boot. 
Bait the keep with  a call. 
Mess his work in the room. 
Man the cut at  the kill. 
Cause a mar on the back. 
Muck the gang on  the walk. 
Book the fool on  the rig. 
Fool the man on  the rock. 
Work the hurl at  the dig. 
Lock your man in a pose. 
Hope this call for  the heat. 
Bar the keep for  the yell. 
Put  a bang in the bomb. 
Set  a pose in the muck. 
Pose a jar on  the bufJ 
Kill the fear in the cause. 
Mar the burn on  the head. 
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