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Comparing Efficiency across State Transport Undertakings:

A Production Frontier Approach

Abstract
Currently, in India, there are sixty-four State Transport Undertakings (STUs) operating in
various states which play a major role in providing short as well as medium distance
passenger mobility. The regulated environment in which STUs operate imposes many
qualitative as well as quantitative constraints on their production. Therefore, the STUs have
relatively few incentives to produce efficiently. This study attempts to answer the question:
“How efficient are the STUs?”. In this study, an attempt has been made to quantify the
technical efficiency (productive efficiency) of twenty-three major Indian State Transport
Undertakings mainly providing rural and inter-city passenger transport services for the year
2000-01. This is done by the estimation of stochastic frontier production function using the
method of maximum likelihood. We found that there is huge disparity in technical efficiency
across STUs ranging from 56.15% for Madhya Pradesh State Road Transport Undertaking to
98.99% for Tamilnadu State Transport Corpn. Ltd. (Kumbakonam Division II). Average of
technical efficiency scores of sample STUs was found to be 84.22%. The main conclusion in
our analysis is that given the size distribution of the sample STUs and their working

environment, the potential gain in productive efficiency for most of them is very high.

Key Words: production frontier models, technical efficiency, State Transport Undertakings

JEL Classification: 1L.32, .92, O30, R40



Comparing Efficiency across State Transport Undertakings:

A Production Frontier Approach

1. Introduction

Buses are playing major role in providing short as well as medium distance passenger
mobility in India. Bus transport services in India are provided by both Private Bus Operators
(henceforth, PBOs) as well as publicly owned State Transport Undertakings (henceforth,
STUs). Indian bus industry, particularly stage carriage services, is dominated by STUs.
Currently, there are 64 STUs in India operating in various states of the country. Due to a
variety of reasons, most of the STUs over the years have accumulated deficits and have not
been able to meet the increasing travel needs of the public. The state governments control the
STUs’ fares and hence to a large extent hinder the ability of these firms to supply the
optimum level of output both in terms of quality as well as quantity. Therefore, the STUs
have relatively few incentives to run their business efficiently. The question may be asked
how efficient are the STUs? i.e., given the input factor quantities, a comparison is made
between the actual output with the maximum possible one that can be produced from these
inputs. What is their level of production in comparison to a fully efficient firm having
comparable input values?

This study attempts to provide answers to these questions. We may begin by recalling
that Farrell (1957) proposed a measure of the efficiency of a firm that consists of two
components: technical efficiency, which reflects the ability of a firm to obtain maximal
output from a given set of inputs, and allocative efficiency, which reflects the ability of a firm
to use the inputs in optimal proportions, given their respective prices. To estimate the

allocative efficiency in STUs is beyond the scope of this study. We will primarily focus on
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the levels of technical (in)efficiency (also called productive efficiency) in Indian STUs. To
examine the level of technical (in)efficiency in STUs, we estimate a stochastic frontier
production function by using the method of maximum likelihood. Annual data for a sample
of 23 STUs for the year 2000-01 are used for the purpose of estimation. The statistical
program FRONTIER Version 4.1 is used for this.

The remainder of this study is organized as follows: Section 2 describes the sample
STUs and the data and section 3 discusses the methodology adopted for the study and results
of estimation of technical efficiency in STUs. Finally, section 4 summarizes and concludes

this study.

2. Sample STUs and the data
2.1. Sample STUs
This study is based on a sample of 23 major STUs in India. Sample STUs mainly provide
rural and inter-city services to the public. To make the comparison meaningful we include in
the sample to only those STUs, which are having fleet strength more than 700 buses. Here is
the list of sample STUs along with their fleet strength i.e., number of buses held during the
year 2000-01:

1. Andhra Pradesh State Road Transport Corporation (APSRTC) — 18946

2. Mabharashtra State Road Transport Corporation (MSRTC) — 16916

3. Gujarat State Road Transport Corporation (GSRTC) — 9847

4. Uttar Pradesh State Road Transport Corporation (UPSRTC) — 7801

5. Rajasthan State Road Transport Corporation (RSRTC) — 4754

6. Karnataka State Road Transport Corporation (KnSRTC) — 6128

7. Kerala State Road Transport Corporation (KSRTC) — 4478
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8. North West Karnataka State Transport Corporation (NWKnRTC) — 3477

9. State Transport Haryana (STHAR) — 3470

10. State Transport Punjab (STPJB) — 2369

11. Madhya Pradesh State Road Transport Corporation (MPSRTC) — 2525

12. Tamilnadu State Transport Corpn. Ltd. (Coimbatore Div. [&III) (CBE-1&III) — 1461
13. Tamilnadu State Transport Corpn. Ltd. (Villupuram Div. I) (VPM-I) — 1035

14. Pepsu Road Transport Corporation (PRTC) — 1156

15. Tamilnadu State Transport Corpn. Ltd. (Kumbakonam Div. IT) (KUM-II) — 895
16. Tamilnadu State Transport Corpn. Ltd. (Kumbakonam Div. I) (KUM-I) — 923
17. Tamilnadu State Transport Corpn. Ltd. (Salem Div. I) (SLM-I) — 945

18. Tamilnadu State Transport Corpn. Ltd. (Coimbatore Div. II) (CBE-II) — 916
19. Tamilnadu State Transport Corpn. Ltd. (Madurai Div. I) (MDU-I) — 921

20. Tamilnadu State Transport Corpn. Ltd. (Villupuram Div. II) (VPM-II) — 837
21. Tamilnadu State Transport Corpn. Ltd. (Madurai Div. II) (MDU-II) — 835

22. Tamilnadu State Transport Corpn. Ltd. (Villupuram Div. IIT) (VPM-III) — 752

23. Tamilnadu State Transport Corpn. Ltd. (Madurai Div. IV) (MDU-1V) — 730

Table 1 presents descriptive statistics of sample undertakings during 2000-01. The size of
the undertakings, as measured by effective bus-kilometers (BKm) in 2000-01, ranges from
1069 lakh BKm for VPM-III to 21781 lakh BKm for APSRTC. Fleet strength of sample
STUs also varies drastically, from 730 buses for MDU-IV to 18946 buses for APSRTC. As
far as economic profitability (defined as a ratio of traffic revenue to operating cost where
operating cost does not include tax component of costs) of sample STUs is concerned, it
varies from 0.81 for MDU-II to 1.11 for STHAR during 2000-01. Ten out of twenty-three
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STUs have managed to raise their traffic revenue sufficient enough to at least recover their
respective operating cost. However, majority of the sample undertakings are making huge

financial losses.

Table 1. Descriptive statistics of the sample undertakings during 2000-01

STUs Bus-Km Traffic Rev. No. of Economic
(Lakh) (Rs. Lakh) employees Profitability'
APSRTC 21781 244843 128796 1.03
MSRTC 17944 226435 112116 1.00
GSRTC 11517 119840 61189 0.87
UPSRTC 6895 67745 47369 0.82
RSRTC 5241 56552 25030 0.96
KnSRTC 5971 66964 24117 0.98
KSRTC 3625 55975 34335 0.87
NWKnSRTC 4096 44102 20820 0.99
STHAR 3840 47794 19587 1.11
STPJB 1895 21675 11736 0.96
MPSRTC 2120 27219 19260 0.90
CBE-I&III 1914 22054 11436 0.86
VPM-I 1664 19688 7612 1.06
PRTC 1095 14558 5133 1.06
KUM-II 1492 17463 6589 1.05
KUM-I 1385 16647 6782 1.03
SLM-I 1426 16497 6708 1.02
CBE-II 1451 16521 6599 1.04
MDU-I 1107 14934 6793 0.94
VPM-II 1217 13890 6109 1.00
MDU-II 1149 12570 6468 0.81
VPM-III 1069 12472 5954 0.96
MDU-1V 1071 11980 5507 0.94

' Economic profitability is defined as a ratio of traffic revenue to operating cost where operating cost is total

cost minus taxes.



2.2. Data source

A cross-section of 23 STUs during 2000-01 forms the primary data base for this study. The
annual data were compiled mainly from State Transport Undertakings: Profile and
Performance 2000-2001 published for the ASSOCIATION OF STATE ROAD TRANSPORT
UNDERTAKINGS, NEW DELHI by the CENTRAL INSTITUTE OF ROAD TRANSPORT,

PUNE, INDIA.

3. Technical efficiency in state transport undertakings: analysis and results

3.1 The stochastic frontier approach

A number of methods for measuring efficiency have been proposed over the last decade, all
of which have in common the concept of the frontier; efficient units are those operating on
the cost or production frontier, while inefficient ones operate either below the frontier (in
case of the production frontier) or above the frontier (in the case of the cost frontier). The
literature on frontier models begins with Farrell (1957) who suggested a useful and
subsequently widely accepted framework for analyzing economic efficiency in terms of
realized deviations from an idealized frontier isoquant.

The stochastic frontier approach postulates that some firms fail to achieve the
production (cost) frontier. That is, inefficiencies exist, and these inefficiencies cannot be fully
explained by measurable variables. Thus, a one-sided error term, in addition to the traditional
symmetric noise term, is incorporated in the model to capture inefficiencies which can not be
explicitly explained.

In line with the works of Aigner, Lovell and Schmidt (1977), and Meeusen and van
den Broeck (1977) on estimation of inefficiency by using a stochastic frontier approach, we
specify stochastic frontier production function for cross-sectional data as:
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In(Y)=Xip+(Vi-Up; 1i=1,2,...N. 1)
where,

In(Y;) denotes logarithm of the output for the iy, firm;

X; represents a (K+1) — row vector, whose first element is “1” and the remaining elements
are the logarithms of the K-input quantities used by the iy, firm;

B is a (K+1) — column vector of unknown parameters to be estimated;

the random error, V;, accounts for measurement error and other random factors, such as the
effect of strikes, economic activities in the region, luck etc., on the value of the output
variable, together with the combined effects of unspecified input variables in the production
function. They are assumed to be independent and identically distributed (i.i.d.) normal
random variables with mean zero and constant variance, ., independent of the U;s; and

the Ujs are non-negative random variables (with standard deviation o) associated with the
inefficiency of the firm i.

In other words, XiP + Vi is the stochastic frontier while U; is the measure of deviation
from the frontier for the iy, firm. The random error, Vi, can be positive or negative and so the
stochastic frontier outputs vary about the deterministic part of the frontier model, Xif3. The
condition, U; is non-negative, ensures that all observations lie on or below the production
frontier.

The basic features of the stochastic frontier model are illustrated in two dimensions in
Figure 1. The inputs are represented on the horizontal axis and the outputs on the vertical
axis. The deterministic component of the frontier model, Y = Exp(Xp) is drawn assuming
that diminishing returns to scale apply. The observed outputs and inputs for two firms i and j
are presented on the graph. The i" firm uses the level of inputs X; to produce the output Y;.

The observed input-output value is indicated by the point marked with x above the value of
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Xi. The value of the stochastic frontier output Y = Exp(Xip + Vi), is marked by the shaded
oval point above the production function because the random error V; is positive. However,
in the case of the jth firm, the frontier output Yj* = Exp(XiB + V;j) is below the production
function because the random error V; is negative. Of course, the stochastic frontier output Y;"
and Y;" are not observed because the random errors V; and V; are not observable. However,
the deterministic part of the stochastic frontier model is seen to lie between the stochastic
frontier outputs. The observed outputs may be greater than the deterministic part of the
frontier if the corresponding random errors are greater than the corresponding inefficiency

effects (i.e., Yi > Exp(Xip) if Vi > Uj).

Figure 1. The Stochastic Frontier Production Function
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The parameters of the stochastic frontier production function, defined by equation (1),
can be estimated using either the maximum-likelihood (ML) method or using a variant of the
corrected ordinary least squares (COLS) method, suggested by Richmond (1974). The COLS
approach is not as computationally demanding as the ML method, which requires numerical
maximization of the likelihood function. This distinction, however, has lessened in recent
years with the availability of sophisticated econometric software, such as Frontier Version
4.1, Limdep Version 7.0 etc.

The ML estimator is asymptotically more efficient than COLS estimator but the
properties of the two estimators in finite samples can be analytically determined. The finite
sample properties of the half-normal frontier model were investigated in a Monte Carlo
experiment by Coelli (1995), in which the ML estimator was found to be significantly better
than the COLS estimator when contribution of the technical inefficiency effects to the total
variance term is large. Given this result and the availability of automated ML routines, the
ML estimator should be used in preference to the COLS estimator whenever possible.”

We will now discuss the basic elements of obtaining ML estimators for the
parameters of the stochastic frontier model. This discussion deals with the case of the half-
normal distribution for the technical inefficiency effects, because it has been most frequently
assumed in empirical applications. Aigner, Lovell and Schmidt (1977) derived the log-
likelihood function for the model, defined by equation (1), in which Uis are assumed to be
1.i.d. truncations (at zero) of a N(O, Gu2) random variable, independent of the Vis which are

assumed to be i.i.d. N (0, o). Aigner, Lovell and Schmidt (1977) expressed the likelihood

. . 2 2 2
function in terms of the two variance parameters, ¢~ = 6, + ¢,” and A = ¢,/G,. Battese and

? For detailed discussion about COLS estimation, please see Coelli (1995).
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Corra (1977) suggested that the parameter, v = 6,”/c”, be used because it has a value between
zero and one, whereas the A-parameter could be any non-negative value. A value of y of zero
indicates that the deviations from the frontier are due entirely to noise, while a value of one
would indicate that all deviations from the frontier are due to technical inefficiency. It should
be stressed, however, that y is not equal to the ratio of the variance of the technical
inefficiency effects to the total residual variance. This is because the variance of Uj is equal
to [(1t—2)/7t]csu2 not o,>. The relative contribution of the inefficiency effect to the total
variance term (y*) is equal to y* = y/[y+(1-y)n/(n-2)].> One should note that y-
parameterization has advantages in seeking to obtain the ML estimates because the parameter
space for y can be searched for a suitable starting value for the iterative maximization
algorithm involved.” Battese and Corra (1977) showed that the log-likelihood function, in

terms of this parameterization is equal to:

In(L) = —%ln(ﬂ/2)—%ln(02)+ﬁ:ln[l—¢(zi )]~ 5 ! - ﬁ:(lnYi -X. )’ Q)

o

InY - X, /
where z, = (n, P " /4 ; and ¢(.) is the distribution function of the standard normal
o -7
variable.
The ML estimates of B, o° and y are obtained by finding the maximum of the log-

likelihood function, defined in equation (2). One should note that the ML estimators are

consistent and asymptotically efficient (Aigner, Lovell and Schmidt (1977), p. 28).

* For more details, please see Coelli (1995).

* The y-parameterization also has advantages in COLS estimation, as indicated in Coelli (1995).
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The technical efficiency of the i"™ firm is defined by TE; = exp(-U;) which involves the
technical inefficiency effect, Ui, which is unobservable. Even if the true value of the
parameter vector, f3, in the stochastic frontier model (1) was known, only the difference, E; =
Vi - Uj, could be observed. The best predictor for U; is the conditional expectation of Uj,
given the value of V; — U;. This is related to the Rao-Blackwell theorem (see, Rao (1973,
p-121). This result was first recognized and applied in the stochastic frontier model by

Jondrow et al. (1982), who derived the result as follows:

EU,|E)=—E, +o, {M} o

1_¢(7/Ei /O-A)

where o, =\/y(1-y)c” ; E, =In(Y,)- X,/ ; and ¢(.) is the density function of a standard

normal random variable.

An operational predictor of U; involves replacing the unknown parameters in equation

(3) with ML (or COLS) estimators. Jondrow et al. (1982) suggested that the technical

efficiency of the i™ firm be predicted using 1—E [U ,.|E l.]. The rationale for this predictor is

that 1-Uj; is a first-order approximation to the infinite-series,

u: U’
exp(-U,)=1-U, +7"—T"+ ........ . Other researchers predicted the technical efficiency,

exp(-Uj), by substituting U; with the predictor associated with the equation (3). Battese and
Coelli (1988) point out that the best predictor of exp(-U;) is obtained by using the following

formula:

]: l-¢g(c,+)E, /0,)

Elexp(-U)IE, 1-¢GE, /o ,)

exp(JE, +07 /2) “)

11



This predictor provides a different value from that which uses equation (3) to predict
Ui in exp(-U;). This is a special case of the general result that the expectation of a non-linear
function of a random variable is not equal to the function of the expectation of the random
variable {i.e., E[g(x)] # g(E[x]) for a non-linear function, g(.)}. The technical efficiency
predictor used for this study is obtained by replacing the unknown parameters in equation (4)
with their ML estimates (the same is implemented in the Frontier computer program).

For the frontier model defined by equation (1) the null hypothesis that there are no
technical inefficiency effects in the model can be conducted by testing the null and
alternative hypothesis Ho: ¥ = 0 vs. Hy: vy > 0. We may use the Wald statistic to test this
hypothesis. For the Wald test, the ratio of the estimate for y to its estimated standard error is
calculated. If Hp: vy = 0 is true, this statistic is asymptotically distributed as a standard normal
random variable. However, the test must be perform as a one-sided test because y can not
take negative values.

It was found that the Wald test has very poor size (i.e., probability of Type-I error)
properties. Hence Coelli (1995) suggested that the generalized likelihood-ratio test should be
performed when ML estimation is involved because this test has the correct size. The
generalized likelihood-ratio test requires the estimation of the model under both the null and
alternate hypotheses. Under the null hypothesis, Ho: v = 0, the model is equivalent to the
traditional average response function, without the technical inefficiency effect, U;. The test
statistic is calculated as:

LR = -2{In[L(Hy)] - In[L(H,)]} ®)
where L(Hy) and L(H;) are the values of the likelihood function under the null and alternative

hypotheses, Hy and H; respectively.
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If Hy is true, this test statistic is usually assumed to be asymptotically as a chi-square
random variable with degrees of freedom equal to the number of restrictions involved (in this
instance one). However, difficulties arise in testing Hp: v = 0 because v = 0 lies on the
boundary of the parameter space for y. In this case if Ho: y = 0 is true, the generalized

likelihood-ratio statistic, LR, has asymptotic distribution which is a mixture of chi-square

e 1 1 . i . .
distributions, namely 5 e +5 x5, (Coelli 1995). The critical value for a test of size o is

equal to the value, y(2a), where this is the value which is exceeded by the y; random
variable with probability equal to 2¢ . Thus, the one-sided generalized likelihood ratio test of
size a is: “Reject Ho: y = 0 in favor of H;: y > 0 if LR exceeds y;(2c)”. Thus the critical

value for a test of size, o =0.05, is 2.706 rather than 3.842 (see, Table 1 of Kodde and Palm
(1986)).

A number of applied studies on stochastic frontier production functions have tested
the null hypothesis that the simpler half-normal model is an adequate representation of the
data, given the specifications of the generalized truncated normal model. This is done by
testing the null hypothesis, Hy: p = 0. This can be easily conducted using either a Wald or a

generalized likelihood ratio test.

3.2 Definition of variables

It is argued that the productivity of a bus transport undertaking depends on the efficient use
of labor and capital. Productivity measurement of Undertakings, therefore, is a means of
quantifying the efficiency with which these two resources are utilized. As a measure of the
output of STUs, effective bus-kilometers (BKm) has been considered for this study. Inputs

are total number of employees and total number of buses held by the STUs. We did not take
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total quantity of fuel consumed as an input since our main concern is to find out the

inefficiency in utilizing the labor and capital in different STUs.

3.3 Model specification and assumptions

The estimation of relative efficiency of STUs is conducted by assuming the appropriateness
of the log-linear Cobb-Douglas case. No other specification was tested due to smaller number
of observation. The logarithmic stochastic frontier model specified for the STUs is defined as
follows:

InY; = By + B1InL; + BoInB; + (Vi - U)), i=1,2,...,23. (6)
where Y; represents the output of the i™ STU which is expressed in terms of Bus-Kilometers
(BKm), L; is total number of employees for i™ STU, B; is total number of buses held by the it

STU, and V; and U; are as defined earlier.

All the estimations were made by using the maximum likelihood methods from the
statistical program “FRONTIER Version 4.1 (see Coelli 1994). Total two models were
estimated. In Model 1, output is assumed to be BKm and U; is half normally distributed
whereas Model 2 assumes U; to have truncated normal distribution. One should note that the
truncated normal distribution is a generalization of the half-normal distribution. It is obtained
by the truncation at zero of the normal distribution with mean, p, and variance, ol If uis
pre-assigned to be zero, then the distribution is the half-normal. The distribution may take a

variety of shapes, depending upon the size and sign of p.
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3.4 Estimation results

The first step in the estimation procedure is to check the sign of the third moment and the
skewness of the OLS residuals associated with the sample data (Waldman, 1982). The third
moment of the OLS residuals for the model represented by equation (6) is —1.177. The
negative sign implies that the residuals of the sample data possess the correct pattern for the
implementation of the MLE procedure. Based on the sample cross-sectional data, the OLS
estimates and the MLEs for each of the two assumed distributions of the inefficiency term in
the frontier model are shown in Table 2. The estimated OLS coefficients are of limited value
but do provide a starting point for the MLE process. The goodness of fit of the estimated
regression equation evaluated by R? for the least squares method looks reasonably high at
0.967. This implies that the two inputs to the model do satisfactorily explain the model
output. In addition the F-statistic of 288.90 shows that the relationship between exogenous
and endogenous variables is significant even at the 1% level.

Note that in the above Table, the log-likelihood function for the full stochastic frontier
model where inefficiency is assumed to be half-normal is calculated to be 13.10 and the
value for the OLS fit of the production function is 8.51, which is less than the full frontier
model. This implies that the generalized likelihood-ratio test statistic for testing the absence
of the technical inefficiency effects from the frontier is calculated to be 9.18 (=2*(13.10-
8.51). This value is significantly higher than the critical value, 2.706 at 5% level of
significance, obtained from Kodde and Palm (1986) for the degrees of freedom equal to 1.
Hence the null hypothesis of no technical inefficiency effects in STUs production is rejected.
Similarly, in case of truncated-normal distribution assumption of inefficiency, the null
hypothesis of no technical efficiency effects is rejected. Table 2 also shows that y-estimate is

not significantly different from one, which indicates that the stochastic frontier model may
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not be significantly different from the deterministic frontier, in which there are no random
errors in the production function. Model 2 of Table 2 is different from Model 1 because it
assumes truncated-normal distribution of inefficiency which is a generalization of the half-
normal distribution. It is obtained by the truncation at zero of the normal distribution with
mean, p, and variance, o,”. If | is pre-assigned to be zero, then the distribution is the half-
normal. We performed a generalized likelihood ratio test which do not reject the null
hypothesis of p = 0. This shows that Model 2 is not statistically superior to Model 1 since p
is not significantly different from zero. Therefore, when bus-km is taken as a measure of
output, the half normal model i.e., Model 1 is an adequate representation of the data.
Estimated results of the Model 1 reveal that few of the coefficients are not statistically
significant as per the t-statistic, however the results of the log likelihood ratio test do not
warrant dropping of the same from the model. Therefore, Model 1 in its entirety is the most
adequate representation of the data.

Table 2. Frontier production function of STUs (Output is BKm)

Model 1 Model 2

Variables/parameters OLS MLE (Half-normal) | MLE (Truncated normal)
Constant 0.203 (0.34) 0.421 (0.72) 0.015 (0.05)

InL 0.405 (1.88) 0.387 (1.86) 0.578 (4.62)

InB 0.493 (2.43) 0.511 (2.71) 0.327 (2.71)
Sigma-squared - 0.057 (2.96) 0.076 (2.28)
Gamma - 0.995 (26.55) 0.999 (60.95)

Mu - - -0.097 (0.52)
Log-likelihood 8.51 13.10 14.47

Figures in parentheses indicate t-ratios.

Under the assumption of a half-normal distribution for the inefficiency term, the
productive efficiency of the STUs is illustrated in Table 3. This Table reveals a marked
variation of technical efficiency across STUs, from 98.99% for KUM-II to 56.15% for

MPSRTC. This implies that KUM-II has realized 98.99% of the production possible for a
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fully efficient firm having comparable input values whereas MPSRTC could do so only to the

tune of 56.15%. It was found that, among the sample firms, KUM-II, VPM-I and APSRTC

are the three most technically efficient STUs whereas STPJB, KSRTC and MPSRTC are the

three least technically efficient STUs. Average of technical efficiency scores of sample STUs

is 84.22%. This indicates that even in the existing business environment most of the STUs

have ample scope to improve their productive efficiency. Technical efficiency scores for nine

of twenty-three sample STUs were below average. For the remaining fourteen firms, which

had technical efficiency scores above average, ten STUs had technical efficiency score above

90% out of which five had a score above 95%.

Table 3. Technical efficiency scores of sample STUs (in percentage).
STU Efficiency Score Efficiency Firm Size Size Rank
(in %age) Rank (in Mn. BKm)
KUM-II 98.99 1 149.24 14
VPM-I 98.30 2 166.44 13
APSRTC 97.90 3 2178.08 1
CBE-II 97.12 4 145.12 15
GSRTC 96.87 5 1151.72 3
SLM-I 93.54 6 142.56 16
KnSRTC 91.93 7 597.14 5
KUM-I 91.58 8 138.46 17
MSRTC 90.76 9 1794.36 2
RSRTC 90.56 10 524.13 6
NWKnSRTC 89.17 11 409.62 7
VPM-II 88.11 12 121.68 18
MDU-IV 86.57 13 107.10 22
STHAR 85.70 14 384.01 8
VPM-III 82.62 15 106.92 23
CBE-1&III 81.85 16 191.40 11
MDU-II 81.53 17 114.92 19
MDU-I 73.35 18 110.71 20
UPSRTC 72.36 19 689.53 4
PRTC 72.01 20 109.51 21
STPJB 62.75 21 189.45 12
KSRTC 57.28 22 362.50 9
MPSRTC 56.15 23 212.00 10
Average 84.22 672.81
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4. Summary and concluding remarks

The prime objective of this study was to quantify the technical inefficiency prevailing in
STUs. For this, we estimated a stochastic frontier production function for the cross-sectional
data by using the method of maximum likelihood. We found that there is huge disparity in
technical efficiency across STUs ranging from 56.15% for MPSRTC to 98.99% for KUM-II.
Average of technical efficiency scores of sample STUs was found to be 84.22%. Among the
sample firms, KUM-II, VPM-I and APSRTC are the three most technically efficient STUs
whereas STPJB, KSRTC and MPSRTC are the three least efficient ones. The main
conclusion in our analysis is that given the size distribution of the sample STUs and their
working environment, the potential gain in productive efficiency for most of them is very

high.

18



References

) Aigner D., Lovell C. A. and Schmidt P. (1977), “Formulation and Estimation of
Stochastic Frontier Production Function Models”, Journal of Econometrics 6: 21-27.

2) Battese G. E. and Coelli T. J. (1988), “Prediction of Firm-Level Technical Efficiencies
With a Generalised Frontier Production Function and Panel Data”, Journal of Econometrics
38: 387-399.

3) Battese G. E. and Coelli T. J. (1992), “Frontier Production Functions, Technical
Efficiency and Panel Data with Applications to Paddy Farmers in India”, Journal of
Productivity Analysis 3: 152-169.

“4) Battese G. E. and Coelli T. J. (1995), “A Model for Technical Inefficiency Effects in a
Stochastic Frontier Production for Panel Data”, Empirical Economics 20: 325-332.

®)) Battese G. E. and Corra G. S. (1977), “Estimation of a Production Frontier Model: With
Application to the Pastoral Zone of Eastern Australia”, Australian Journal of Agricultural
Economics 21: 169-179.

(6) Coelli T. J. (1995), “Estimators and Hypothesis Tests for a Stochastic Frontier Function:
A Monte Carlo Analysis”, Journal of Productivity Analysis 6: 247-268.

@) Coelli T. J. (1994), “A Guide to FRONTIER Version 4.1: A Computer Program for
Stochastic Frontier Production and Cost Function Estimation”, MIMEQO, Department of
Economics, University of New England.

) Cornwell C., Schmidt P. and Sickles R. E. (1990), “Production Frontiers with Cross-
sectional and Time-series Variation in Efficiency Levels”, Journal of Econometrics 46: 185-
200.

9 Cullinane K. et al. (2002), “A Stochastic Frontier Model of the Efficiency of Major
Container Terminals in Asia: Assessing the Influence of Administrative and Ownership
Structures”, Transportation Research Part A 36: 743-762.

(10) De Rus G. and Nombela G. (1997), “Privatisation of Urban Bus Services in Spain”,
Journal of Transport Economics and Policy 31(1): 115-129.

(11)  Farrell M. J. (1957), “The Measurement of Productive Efficiency”, Journal of Royal
Statistical Society, Series A, CXX, Part 3, 253-290.

(12)  Finn Jorgensen, Pal Andreas Pedersen and Rolf Volden (1997), “Estimating the
Inefficiency in the Norwegian Bus Industry from Stochastic Cost Frontier Models”,
Transportation 24: 421-433.

19



(13) Forsund F., Lovell C. A. and Schmidt P. (1980), “A Survey of Frontier Production
Functions and of Their Relationship to Efficiency Measurement”, Journal of Econometrics
13: 5-25.

(14)  Hensher D.A. (1987), “Productive Efficiency and Ownership of Urban Bus Services”,
Transportation 14: 209-225.

(15) Huang C. J. and Liu J. T. (1994), “Estimation of Non-neutral Stochastic Frontier
Production Function”, Journal of Productivity Analysis 5: 171-180.

(16) Jha R. and Singh S. K. (2001), “Small is Efficient: A Frontier Approach to Cost
Inefficiencies in Indian State Road Transport Undertakings”, International Journal of
Transport Economics XXVIII(1): 95-114.

(17)  Jha R. et al. (1999), “Tax Efficiency in Selected Indian States”, Empirical Economics
24(4): 641-654.

(18) Jha R. and Singh S. P. (1994), “Intertemporal and Cross-section Variations in Technical
Efficiency in the Indian Railways”, International Journal of Transport Economics 21: 57-73.

(19)  Jondrow et al. (1982), “On Estimation of Technical Inefficiency in the Stochastic Frontier
Production Function Model”, Journal of Econometrics 19: 233-238.

(20) Kodde D. A. and Palm F. C. (1986), “Wald Criteria for Jointly Testing Equality and
Inequality Restrictions”, Econometrica 54: 1243-1248.

(21)  Meeusen W. and van dn Broeck J. (1977), “Efficiency Estimation from Cobb-Douglas
Production Function with Composed Error”, International Economic Review 18(2): 435-444.

(22) Rao C. R. (1973), “Linear Statistical Inference and Its Applications”, Second Edition,
Wiley, New York.

(23) Richmond J. (1974), “Estimating the Efficiency of Production”, International Economic
Review 15: 515-521.

(24) Singh S. K. (2000), “State Road Transport Undertakings, 1983-84 to 1996-97: A
Multilateral Comparison of Total Factor Productivity”, Indian Journal of Transport
Management 24(5): 363-388.

(25) Waldman D. (1982), “A Stationary Point for the Stochastic Frontier Likelihood”, Journal
of Econometrics 18: 275-279.

20



