ASSIGNMENT 2

MTH102A
(1) Using Gauss Jordan elimination method find the inverse of $\left[\begin{array}{lll}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{array}\right]$.
(2) Let $\sigma \in S_{5}$ be given by

$$
\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
5 & 4 & 1 & 2 & 3
\end{array}\right)
$$

(a) Find sign of σ and sign of σ^{-1},
(b) Find $\sigma^{2}=\sigma \circ \sigma$.
(3) Using the definition compute the determinant of $\left[\begin{array}{lll}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{array}\right]$.
(4) Let A be a square matrix of order n. Show that $\operatorname{det}(A)=0$ if and only if there exists a non-zero vector $X=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ such that $A X^{T}=0$.
(5) (Vandermonde Matrix) Find the determinant of the following matrix:

$$
\left(\begin{array}{ccccc}
1 & x_{1} & x_{1}^{2} & \ldots & x_{1}^{n-1} \\
1 & x_{2} & x_{2}^{2} & \ldots & x_{2}^{n-1} \\
. . & . . & . . & \ldots & . . \\
1 & x_{n} & x_{n}^{2} & \ldots & x_{n}^{n-1}
\end{array}\right)
$$

(6) Let A be a $n \times n$ real matrix. Show that $\operatorname{det}(\operatorname{adj}(A))=(\operatorname{det}(A))^{n-1}$ and $\operatorname{adj}(\operatorname{adj}(A))=(\operatorname{det}(A))^{n-2} \cdot A$.
(7) Using Cramer's rule solve the following system:

$$
\begin{gathered}
x+2 y+3 z=1 \\
-x+2 z=2 \\
-2 y+z=-2
\end{gathered}
$$

