ASSIGNMENT 1

MTH102A
(1) Show that matrix multiplication is associative i.e. $A(B C)=(A B) C$ whenever the multiplication is defined.
(2) Suppose A and B are matrices of order $m \times n$ such that $A \bar{x}=B \bar{x}$ for all $\bar{x} \in \mathbb{R}^{n}$. Prove that $A=B$.
(3) Let $A=\left(a_{i j}\right)$ be a matrix. Transpose of A, denoted by A^{T}, is defined to be $A^{T}=\left(b_{i j}\right)$ where $b_{i j}=a_{j i}$.
(i) Show that $(A+B)^{T}=A^{T}+B^{T}$, whenever $A+B$ is defined
(ii) Show that $(A B)^{T}=B^{T} A^{T}$, whenever $A B$ is defined.
(4) A square matrix A is said to be symmetric if $A=A^{T}$ and a square matrix A is said to be skew symmetric if $A=-A^{T}$.
Prove that a square matrix can be written as a sum of symmetric and a skew symmetric matrix.
(5) A square matrix A is said to be nilpotent if $A^{n}=0$ for some natural number n.
(i) Give examples of non-zero nilpotent matrices,
(ii) Prove that if A is nilpotent then $A+I$ is an invertible matrix, where I is the identity matrix.
(6) Trace of a square matrix A, denoted by $\operatorname{Tr}(A)$, is defined to be the sum of all diagonal entries.
(i) Suppose A, B are two square matrices of same order. Prove that $\operatorname{Tr}(A B)=$ $\operatorname{Tr}(B A)$.
(ii) Show that for an invertible matrix $A, \operatorname{Tr}\left(A B A^{-1}\right)=\operatorname{Tr}(B)$.
(7) Apply Gauss elimination method to solve the system $2 x+y+2 z=3,3 x-y+4 z=7$ and $4 x+3 y+6 z=5$.
(8) Find the row reduced echelon form of the matrix $\left[\begin{array}{ccc}2 & 6 & -2 \\ 3 & -2 & 8\end{array}\right]$.

