## ASSIGNMENT 1 <br> SOLUTIONS MTH102A

(1) Show that matrix multiplication is associative i.e. $A(B C)=(A B) C$ whenever the multiplication is defined.
Solution. Let $A=\left(a_{i j}\right)_{m \times n}, B=\left(b_{i j}\right)_{n \times p}, C=\left(a_{i j}\right)_{p \times q}$ be matrices.
We first consider $A(B C)$
Let $R=\left(r_{i j}\right)_{n \times q}=B C, S=\left(s_{i j}\right)_{m \times q}=A(B C)$, Then

$$
\begin{aligned}
s_{i j} & =\sum_{l=1}^{n} a_{i l} r_{l j} \\
r_{l j} & =\sum_{k=1}^{p} b_{l k} c_{k j} \\
s_{i j} & =\sum_{l=1}^{n} a_{i l}\left(\sum_{k=1}^{p} b_{l k} c_{k j}\right) \\
\Longrightarrow s_{i j} & =\sum_{l=1}^{n} \sum_{k=1}^{p} a_{i l} b_{l k} c_{k j} .
\end{aligned}
$$

Similarly for $(A B) C$, taking $R=\left(r_{i j}\right)_{m \times p}=A B$ and $S=\left(s_{i j}\right)_{m \times q}=(A B) C$ we get

$$
s_{i j}=\sum_{l=1}^{n} \sum_{k=1}^{p} a_{i l} b_{l k} c_{k j}
$$

Therefore $A(B C)=(A B) C$.
(2) Suppose $A$ and $B$ are matrices of order $m \times n$ such that $A \bar{x}=B \bar{x}$ for all $\bar{x} \in \mathbb{R}^{n}$. Prove that $A=B$.
Solution. Let $A=\left(a_{i j}\right)_{m \times n}$ and $B=\left(a_{i j}\right)_{m \times n}$ be matrices. Take $\bar{x}=e_{j}$ where $e_{j}=(0, . ., 1, . ., 0) \in \mathbb{R}^{n},(1$ at the $j$ th position $)$.
So $A e_{j}=B e_{j} \Longrightarrow j$ th coloumn of A and B is same for $j=1$ to $n$ Hence $A=B$.
(3) Let $A=\left(a_{i j}\right)$ be a matrix. Transpose of $A$, denoted by $A^{T}$, is defined to be $A^{T}=\left(b_{i j}\right)$ where $b_{i j}=a_{j i}$.
(i) Show that $(A+B)^{T}=A^{T}+B^{T}$, whenever $A+B$ is defined
(ii) Show that $(A B)^{T}=B^{T} A^{T}$, whenever $A B$ is defined.

Solution. (i) Let $A=\left(a_{i j}\right)_{n \times n}, A^{T}=\left(a_{i j}^{\prime}\right)_{n \times n}, B=\left(b_{i j}\right)_{n \times n}, B^{T}=\left(b_{i j}^{\prime}\right)_{n \times n}$ ,$(A+B)=\left(c_{i j}\right)$ and $(A+B)^{T}=\left(d_{i j}\right)$. Then $d_{i j}=c_{j i}=a_{j i}+b_{j i}=\left(a_{i j}^{\prime}+b_{i j}^{\prime}\right.$. Hence $(A+B)^{T}=A^{T}+B^{T}$.
(ii) Let $A B=\left(c_{i j}\right)_{n \times n}$ and $(A B)^{T}=\left(d_{i j}\right)_{n \times n}$. Then $d_{i j}=c_{j i}=$ $\sum_{k=1}^{n} a_{j k} b_{k i}=\sum_{k=1}^{n} a_{k j}^{\prime} b_{i k}^{\prime}=\sum_{k=1}^{n} b_{i k}^{\prime} a_{k j}^{\prime}$. Hence $(A B)^{T}=B^{T} A^{T}$.
(4) A square matrix $A$ is said to be symmetric if $A=A^{T}$ and a square matrix $A$ is said to be skew symmetric if $A=-A^{T}$.
Prove that a square matrix can be written as a sum of symmetric and skew symmetric matrix.
Solution. $A=\frac{1}{2}\left(A+A^{T}\right)+\frac{1}{2}\left(A-A^{T}\right)$.

$$
\begin{aligned}
& \text { Now }\left(\frac{1}{2}\left(A+A^{T}\right)\right)^{T}=\frac{1}{2}\left(A^{T}+\left(A^{T}\right)^{T}\right)=\frac{1}{2}\left(A+A^{T}\right) . \\
& \left(\frac{1}{2}\left(A-A^{T}\right)\right)^{T}=\frac{1}{2}\left(A^{T}-\left(A^{T}\right)^{T}\right)=-\frac{1}{2}\left(A+A^{T}\right)
\end{aligned}
$$

(5) A square matrix $A$ is said to be nilpotent if $A^{n}=0$ for some natural number $n$.
(i) Give examples of non-zero nilpotent matrices,
(ii) Prove that if $A$ is nilpotent then $A+I$ is an invertible matrix, where $I$ is identity matrix.
Solution. (i) Strictly upper triangular matrices (i.e. $a_{i j}=0$ for all $i \leq j$ ) are nilpotent.
(ii) $(I+A)\left(I-A+\ldots+(-1)^{n-1} A^{n-1}\right)=I+(-1)^{n-1} A^{n}=I$
(6) Trace of a square matrix $A$, denoted by $\operatorname{Tr}(A)$, is defined to be the sum of all diagonal entries.
(i) Suppose $A, B$ are two square matrices of same order. Prove that $\operatorname{Tr}(A B)=\operatorname{Tr}(B A)$.
(ii) Show that if $A$ is invertible then $\operatorname{Tr}\left(A B A^{-1}\right)=\operatorname{Tr}(B)$.

Solution. (i) Let $A=\left(a_{i j}\right)_{n \times n}, B=\left(b_{i j}\right)_{n \times n}, A B=\left(c_{i j}\right)_{n \times n}$ and $B A=\left(d_{i j}\right)_{n \times n}$. Then $c_{i j}=\sum_{k=1}^{n} a_{i k} b_{k j}$ and $d_{i j}=\sum_{k=1}^{n} b_{i k} a_{k j}$. So $\operatorname{Tr}(A B)=$ $\sum_{i=1}^{n} c_{i i}=\sum_{i=1}^{n} \sum_{k=1}^{n} a_{i k} b_{k i}=\sum_{k=1}^{n} \sum_{i=1}^{n} b_{k i} a_{i k}=\sum_{k=1}^{n} d_{k k}=\operatorname{Tr}(B A)$.
(ii) $\operatorname{Tr}\left(A B A^{-1}\right)=\operatorname{Tr}\left((A B) A^{-1}\right)=\operatorname{Tr}\left(A^{-1}(A B)\right)=\operatorname{Tr}(B)$
(7) Apply Gauss elimination method to solve the system $2 x+y+2 z=3,3 x-$ $y+4 z=7$ and $4 x+3 y+6 z=5$.

Solution. The augmented matrix is

$$
\left[\begin{array}{ccc|c}
2 & 1 & 2 & 3 \\
3 & -1 & 4 & 7 \\
4 & 3 & 6 & 5
\end{array}\right]
$$

$$
\begin{gathered}
{\left[\begin{array}{ccc|c}
2 & 1 & 2 & 3 \\
3 & -1 & 4 & 7 \\
4 & 3 & 6 & 5
\end{array}\right] \xrightarrow{\xrightarrow{R_{2} \rightarrow R_{2}-(3 / 2) R_{1}}\left[\begin{array}{ccc|c}
2 & 1 & 2 & 3 \\
0 & -5 / 2 & 1 & 5 / 2 \\
4 & 3 & 6 & 5
\end{array}\right] \xrightarrow{R_{3} \rightarrow R_{3}-2 R_{1}}\left[\begin{array}{ccc|c}
2 & 1 & 2 & 3 \\
0 & -5 / 2 & 1 & 5 / 2 \\
0 & 1 & 2 & -1
\end{array}\right]} \text { } \xrightarrow{R_{3} \rightarrow R_{3}+(2 / 5) R_{2}}\left[\begin{array}{ccc|c}
2 & 1 & 2 & 3 \\
0 & -5 / 2 & 1 & 5 / 2 \\
0 & 0 & 12 / 5 & 0
\end{array}\right]}
\end{gathered}
$$

We can thus obtain the solution to the given linear system by solving the equivalent system

$$
\begin{aligned}
2 x+y+2 z & =3 \\
(-5 / 2) y+z & =5 / 2 \\
(12 / 5) z & =0
\end{aligned}
$$

The solution is $x=2, y=-1$ and $z=0$.
(8) Find the row reduced echelon form of the matrix $\left[\begin{array}{ccc}2 & 6 & -2 \\ 3 & -2 & 8\end{array}\right]$.

Solution.

$$
\begin{gathered}
{\left[\begin{array}{ccc}
2 & 6 & -2 \\
3 & -2 & 8
\end{array}\right] \xrightarrow{R_{1} \rightarrow \frac{1}{2} R_{1}}\left[\begin{array}{ccc}
1 & 3 & -1 \\
3 & -2 & 8
\end{array}\right] \xrightarrow{R_{2} \rightarrow R_{2}-3 R_{1}}\left[\begin{array}{ccc}
1 & 3 & -1 \\
0 & -11 & 11
\end{array}\right]} \\
\xrightarrow{R_{2} \rightarrow \frac{-1}{11} R_{2}}\left[\begin{array}{ccc}
1 & 3 & -1 \\
0 & 1 & -1
\end{array}\right] \xrightarrow{R_{1} \rightarrow R_{1}-3 R_{2}}\left[\begin{array}{ccc}
1 & 0 & 2 \\
0 & 1 & -1
\end{array}\right]
\end{gathered}
$$

